package simulation

// import (
// 	"errors"
// 	"fmt"
// 	"math/big"
// 	"math/rand"
// 	"time"

// 	"github.com/cosmos/cosmos-sdk/baseapp"
// 	"github.com/cosmos/cosmos-sdk/codec"
// 	"github.com/cosmos/cosmos-sdk/simapp/helpers"
// 	sdk "github.com/cosmos/cosmos-sdk/types"
// 	authexported "github.com/cosmos/cosmos-sdk/x/auth/exported"
// 	"github.com/cosmos/cosmos-sdk/x/simulation"

// 	appparams "github.com/kava-labs/kava/app/params"
// 	"github.com/kava-labs/kava/x/swap/keeper"
// 	"github.com/kava-labs/kava/x/swap/types"
// )

// var (
// 	//nolint
// 	noOpMsg             = simulation.NoOpMsg(types.ModuleName)
// 	errorNotEnoughCoins = errors.New("account doesn't have enough coins")
// )

// // Simulation operation weights constants
// const (
// 	OpWeightMsgDeposit            = "op_weight_msg_deposit"
// 	OpWeightMsgWithdraw           = "op_weight_msg_withdraw"
// 	OpWeightMsgSwapExactForTokens = "op_weight_msg_swap_exact_for_tokens"
// 	OpWeightMsgSwapForExactTokens = "op_weight_msg_swap_for_exact_tokens"
// )

// // WeightedOperations returns all the operations from the module with their respective weights
// func WeightedOperations(
// 	appParams simulation.AppParams, cdc *codec.Codec, ak types.AccountKeeper, k keeper.Keeper,
// ) simulation.WeightedOperations {
// 	var weightMsgDeposit int
// 	var weightMsgWithdraw int
// 	var weightMsgSwapExactForTokens int
// 	var weightMsgSwapForExactTokens int

// 	appParams.GetOrGenerate(cdc, OpWeightMsgDeposit, &weightMsgDeposit, nil,
// 		func(_ *rand.Rand) {
// 			weightMsgDeposit = appparams.DefaultWeightMsgDeposit
// 		},
// 	)

// 	appParams.GetOrGenerate(cdc, OpWeightMsgWithdraw, &weightMsgWithdraw, nil,
// 		func(_ *rand.Rand) {
// 			weightMsgWithdraw = appparams.DefaultWeightMsgWithdraw
// 		},
// 	)

// 	appParams.GetOrGenerate(cdc, OpWeightMsgSwapExactForTokens, &weightMsgSwapExactForTokens, nil,
// 		func(_ *rand.Rand) {
// 			weightMsgSwapExactForTokens = appparams.DefaultWeightMsgSwapExactForTokens
// 		},
// 	)

// 	appParams.GetOrGenerate(cdc, OpWeightMsgSwapForExactTokens, &weightMsgSwapForExactTokens, nil,
// 		func(_ *rand.Rand) {
// 			weightMsgSwapForExactTokens = appparams.DefaultWeightMsgSwapForExactTokens
// 		},
// 	)

// 	return simulation.WeightedOperations{
// 		simulation.NewWeightedOperation(
// 			weightMsgDeposit,
// 			SimulateMsgDeposit(ak, k),
// 		),
// 		simulation.NewWeightedOperation(
// 			weightMsgWithdraw,
// 			SimulateMsgWithdraw(ak, k),
// 		),
// 		simulation.NewWeightedOperation(
// 			weightMsgSwapExactForTokens,
// 			SimulateMsgSwapExactForTokens(ak, k),
// 		),
// 		simulation.NewWeightedOperation(
// 			weightMsgSwapForExactTokens,
// 			SimulateMsgSwapForExactTokens(ak, k),
// 		),
// 	}
// }

// // SimulateMsgDeposit generates a MsgDeposit
// func SimulateMsgDeposit(ak types.AccountKeeper, k keeper.Keeper) simulation.Operation {
// 	return func(
// 		r *rand.Rand, app *baseapp.BaseApp, ctx sdk.Context, accs []simulation.Account, chainID string,
// 	) (simulation.OperationMsg, []simulation.FutureOperation, error) {
// 		// Get possible pools and shuffle so that deposits are evenly distributed across pools
// 		params := k.GetParams(ctx)
// 		allowedPools := params.AllowedPools
// 		r.Shuffle(len(allowedPools), func(i, j int) {
// 			allowedPools[i], allowedPools[j] = allowedPools[j], allowedPools[i]
// 		})

// 		// Find an account-pool pair that is likely to result in a successful deposit
// 		blockTime := ctx.BlockHeader().Time
// 		depositor, allowedPool, found := findValidAccountAllowedPoolPair(accs, allowedPools, func(acc simulation.Account, pool types.AllowedPool) bool {
// 			account := ak.GetAccount(ctx, acc.Address)

// 			err := validateDepositor(ctx, k, pool, account, blockTime)
// 			if err == errorNotEnoughCoins {
// 				return false // keep searching
// 			} else if err != nil {
// 				panic(err) // raise errors
// 			}
// 			return true // found valid pair
// 		})
// 		if !found {
// 			return simulation.NewOperationMsgBasic(types.ModuleName, "no-operation (no valid allowed pool and depositor)", "", false, nil), nil, nil
// 		}

// 		// Get random slippage amount between 1-99%
// 		slippageRaw, err := RandIntInclusive(r, sdk.OneInt(), sdk.NewInt(99))
// 		if err != nil {
// 			panic(err)
// 		}
// 		slippage := slippageRaw.ToDec().Quo(sdk.NewDec(100))

// 		// Generate random deadline
// 		deadline := genRandDeadline(r, blockTime)

// 		depositorAcc := ak.GetAccount(ctx, depositor.Address)
// 		depositorCoins := depositorAcc.SpendableCoins(blockTime)

// 		// Construct initial msg (without coin amounts)
// 		msg := types.NewMsgDeposit(depositorAcc.GetAddress(), sdk.Coin{}, sdk.Coin{}, slippage, deadline)

// 		// Populate msg with randomized token amounts
// 		pool, found := k.GetPool(ctx, allowedPool.Name())
// 		if !found { // Pool doesn't exist: first deposit
// 			depositTokenA := randCoinFromCoins(r, depositorCoins, allowedPool.TokenA)
// 			msg.TokenA = depositTokenA

// 			depositTokenB := randCoinFromCoins(r, depositorCoins, allowedPool.TokenB)
// 			msg.TokenB = depositTokenB
// 		} else { // Pool exists: successive deposit
// 			var denomX string // Denom X is the token denom in the pool with the larger amount
// 			var denomY string //  Denom Y is the token denom in the pool with the larger amount
// 			if pool.ReservesA.Amount.GTE(pool.ReservesB.Amount) {
// 				denomX = pool.ReservesA.Denom
// 				denomY = pool.ReservesB.Denom
// 			} else {
// 				denomX = pool.ReservesB.Denom
// 				denomY = pool.ReservesA.Denom
// 			}
// 			depositTokenY := randCoinFromCoins(r, depositorCoins, denomY)
// 			msg.TokenA = depositTokenY

// 			// Calculate the pool's slippage ratio and use it to build other coin
// 			ratio := pool.Reserves().AmountOf(denomX).ToDec().Quo(pool.Reserves().AmountOf(denomY).ToDec())
// 			amtTokenX := depositTokenY.Amount.ToDec().Mul(ratio).RoundInt()
// 			depositTokenX := sdk.NewCoin(denomX, amtTokenX)
// 			if depositorCoins.AmountOf(denomX).LT(amtTokenX) {
// 				return simulation.NewOperationMsgBasic(types.ModuleName, "no-operation (depositor has insufficient coins)", "", false, nil), nil, nil
// 			}
// 			msg.TokenB = depositTokenX
// 		}

// 		err = msg.ValidateBasic()
// 		if err != nil {
// 			return noOpMsg, nil, nil
// 		}

// 		tx := helpers.GenTx(
// 			[]sdk.Msg{msg},
// 			sdk.NewCoins(),
// 			helpers.DefaultGenTxGas,
// 			chainID,
// 			[]uint64{depositorAcc.GetAccountNumber()},
// 			[]uint64{depositorAcc.GetSequence()},
// 			depositor.PrivKey,
// 		)

// 		_, result, err := app.Deliver(tx)
// 		if err != nil {
// 			// to aid debugging, add the stack trace to the comment field of the returned opMsg
// 			return simulation.NewOperationMsg(msg, false, fmt.Sprintf("%+v", err)), nil, err
// 		}
// 		return simulation.NewOperationMsg(msg, true, result.Log), nil, nil
// 	}
// }

// // SimulateMsgWithdraw generates a MsgWithdraw
// func SimulateMsgWithdraw(ak types.AccountKeeper, k keeper.Keeper) simulation.Operation {
// 	return func(
// 		r *rand.Rand, app *baseapp.BaseApp, ctx sdk.Context, accs []simulation.Account, chainID string,
// 	) (simulation.OperationMsg, []simulation.FutureOperation, error) {

// 		poolRecords := k.GetAllPools(ctx)
// 		r.Shuffle(len(poolRecords), func(i, j int) {
// 			poolRecords[i], poolRecords[j] = poolRecords[j], poolRecords[i]
// 		})

// 		// Find an account-pool pair for which withdraw is possible
// 		withdrawer, poolRecord, found := findValidAccountPoolRecordPair(accs, poolRecords, func(acc simulation.Account, poolRecord types.PoolRecord) bool {
// 			_, found := k.GetDepositorShares(ctx, acc.Address, poolRecord.PoolID)
// 			return found
// 		})
// 		if !found {
// 			return simulation.NewOperationMsgBasic(types.ModuleName, "no-operation (no valid pool record and withdrawer)", "", false, nil), nil, nil
// 		}

// 		withdrawerAcc := ak.GetAccount(ctx, withdrawer.Address)
// 		shareRecord, _ := k.GetDepositorShares(ctx, withdrawerAcc.GetAddress(), poolRecord.PoolID)
// 		denominatedPool, err := types.NewDenominatedPoolWithExistingShares(poolRecord.Reserves(), poolRecord.TotalShares)
// 		if err != nil {
// 			return noOpMsg, nil, nil
// 		}
// 		coinsOwned := denominatedPool.ShareValue(shareRecord.SharesOwned)

// 		// Get random amount of shares between 2-10% of the total
// 		sharePercentage, err := RandIntInclusive(r, sdk.NewInt(2), sdk.NewInt(10))
// 		if err != nil {
// 			panic(err)
// 		}
// 		shares := shareRecord.SharesOwned.Mul(sharePercentage).Quo(sdk.NewInt(100))

// 		// Expect minimum token amounts relative to the % of shares owned and withdrawn
// 		oneLessThanSharePercentage := sharePercentage.Sub(sdk.OneInt())

// 		amtTokenAOwned := coinsOwned.AmountOf(poolRecord.ReservesA.Denom)
// 		minAmtTokenA := amtTokenAOwned.Mul(oneLessThanSharePercentage).Quo(sdk.NewInt(100))
// 		minTokenA := sdk.NewCoin(poolRecord.ReservesA.Denom, minAmtTokenA)

// 		amtTokenBOwned := coinsOwned.AmountOf(poolRecord.ReservesB.Denom)
// 		minTokenAmtB := amtTokenBOwned.Mul(oneLessThanSharePercentage).Quo(sdk.NewInt(100))
// 		minTokenB := sdk.NewCoin(poolRecord.ReservesB.Denom, minTokenAmtB)

// 		// Generate random deadline
// 		blockTime := ctx.BlockHeader().Time
// 		deadline := genRandDeadline(r, blockTime)

// 		// Construct MsgWithdraw
// 		msg := types.NewMsgWithdraw(withdrawerAcc.GetAddress(), shares, minTokenA, minTokenB, deadline)
// 		err = msg.ValidateBasic()
// 		if err != nil {
// 			return noOpMsg, nil, nil
// 		}

// 		tx := helpers.GenTx(
// 			[]sdk.Msg{msg},
// 			sdk.NewCoins(),
// 			helpers.DefaultGenTxGas,
// 			chainID,
// 			[]uint64{withdrawerAcc.GetAccountNumber()},
// 			[]uint64{withdrawerAcc.GetSequence()},
// 			withdrawer.PrivKey,
// 		)

// 		_, result, err := app.Deliver(tx)
// 		if err != nil {
// 			// to aid debugging, add the stack trace to the comment field of the returned opMsg
// 			return simulation.NewOperationMsg(msg, false, fmt.Sprintf("%+v", err)), nil, err
// 		}
// 		return simulation.NewOperationMsg(msg, true, result.Log), nil, nil

// 	}
// }

// // SimulateMsgSwapExactForTokens generates a MsgSwapExactForTokens
// func SimulateMsgSwapExactForTokens(ak types.AccountKeeper, k keeper.Keeper) simulation.Operation {
// 	return func(
// 		r *rand.Rand, app *baseapp.BaseApp, ctx sdk.Context, accs []simulation.Account, chainID string,
// 	) (simulation.OperationMsg, []simulation.FutureOperation, error) {

// 		poolRecords := k.GetAllPools(ctx)
// 		r.Shuffle(len(poolRecords), func(i, j int) {
// 			poolRecords[i], poolRecords[j] = poolRecords[j], poolRecords[i]
// 		})

// 		// Find an account-pool pair for which trade is possible
// 		trader, poolRecord, found := findValidAccountPoolRecordPair(accs, poolRecords, func(acc simulation.Account, poolRecord types.PoolRecord) bool {
// 			traderAcc := ak.GetAccount(ctx, acc.Address)
// 			balanceTokenA := traderAcc.GetCoins().AmountOf(poolRecord.ReservesA.Denom)
// 			balanceTokenB := traderAcc.GetCoins().AmountOf(poolRecord.ReservesB.Denom)
// 			if !balanceTokenA.IsPositive() || !balanceTokenB.IsPositive() {
// 				return false
// 			}
// 			return true
// 		})
// 		if !found {
// 			return simulation.NewOperationMsgBasic(types.ModuleName, "no-operation (no valid pool record and trader)", "", false, nil), nil, nil
// 		}

// 		// Select input token
// 		randInt, err := RandInt(r, sdk.OneInt(), sdk.NewInt(9))
// 		if err != nil {
// 			panic(err)
// 		}
// 		inputToken := poolRecord.ReservesA
// 		outputToken := poolRecord.ReservesB
// 		if randInt.Int64()%2 == 0 {
// 			inputToken = poolRecord.ReservesB
// 			outputToken = poolRecord.ReservesA
// 		}

// 		// Select entity (trader account or pool) with smaller token amount
// 		traderAcc := ak.GetAccount(ctx, trader.Address)
// 		maxTradeAmount := inputToken.Amount
// 		if traderAcc.GetCoins().AmountOf(inputToken.Denom).LT(inputToken.Amount) {
// 			maxTradeAmount = traderAcc.GetCoins().AmountOf(inputToken.Denom)
// 		}

// 		// Exact input token is between 2-10% of the max trade amount
// 		percentage, err := RandIntInclusive(r, sdk.NewInt(2), sdk.NewInt(10))
// 		if err != nil {
// 			panic(err)
// 		}
// 		tradeAmount := maxTradeAmount.Mul(percentage).Quo(sdk.NewInt(100))
// 		exactInputToken := sdk.NewCoin(inputToken.Denom, tradeAmount)

// 		// Calculate expected output coin
// 		globalSwapFee := k.GetSwapFee(ctx)
// 		tradeAmountAfterFee := exactInputToken.Amount.ToDec().Mul(sdk.OneDec().Sub(globalSwapFee)).TruncateInt()

// 		var outputAmt big.Int
// 		outputAmt.Mul(outputToken.Amount.BigInt(), tradeAmountAfterFee.BigInt())
// 		outputAmt.Quo(&outputAmt, inputToken.Amount.Add(tradeAmountAfterFee).BigInt())
// 		expectedOutTokenAmount := sdk.NewIntFromBigInt(&outputAmt)
// 		expectedOutputToken := sdk.NewCoin(outputToken.Denom, expectedOutTokenAmount)

// 		// Get random slippage amount between 50-100%
// 		slippageRaw, err := RandIntInclusive(r, sdk.NewInt(50), sdk.NewInt(99))
// 		if err != nil {
// 			panic(err)
// 		}
// 		slippage := slippageRaw.ToDec().Quo(sdk.NewDec(100))

// 		// Generate random deadline
// 		blockTime := ctx.BlockHeader().Time
// 		deadline := genRandDeadline(r, blockTime)

// 		// Construct MsgSwapExactForTokens
// 		msg := types.NewMsgSwapExactForTokens(traderAcc.GetAddress(), exactInputToken, expectedOutputToken, slippage, deadline)
// 		err = msg.ValidateBasic()
// 		if err != nil {
// 			return noOpMsg, nil, nil
// 		}

// 		tx := helpers.GenTx(
// 			[]sdk.Msg{msg},
// 			sdk.NewCoins(),
// 			helpers.DefaultGenTxGas,
// 			chainID,
// 			[]uint64{traderAcc.GetAccountNumber()},
// 			[]uint64{traderAcc.GetSequence()},
// 			trader.PrivKey,
// 		)

// 		_, result, err := app.Deliver(tx)
// 		if err != nil {
// 			// to aid debugging, add the stack trace to the comment field of the returned opMsg
// 			return simulation.NewOperationMsg(msg, false, fmt.Sprintf("%+v", err)), nil, err
// 		}
// 		return simulation.NewOperationMsg(msg, true, result.Log), nil, nil
// 	}
// }

// // SimulateMsgSwapForExactTokens generates a MsgSwapForExactTokens
// func SimulateMsgSwapForExactTokens(ak types.AccountKeeper, k keeper.Keeper) simulation.Operation {
// 	return func(
// 		r *rand.Rand, app *baseapp.BaseApp, ctx sdk.Context, accs []simulation.Account, chainID string,
// 	) (simulation.OperationMsg, []simulation.FutureOperation, error) {

// 		poolRecords := k.GetAllPools(ctx)
// 		r.Shuffle(len(poolRecords), func(i, j int) {
// 			poolRecords[i], poolRecords[j] = poolRecords[j], poolRecords[i]
// 		})

// 		// Find an account-pool pair for which trade is possible
// 		trader, poolRecord, found := findValidAccountPoolRecordPair(accs, poolRecords, func(acc simulation.Account, poolRecord types.PoolRecord) bool {
// 			traderAcc := ak.GetAccount(ctx, acc.Address)
// 			balanceTokenA := traderAcc.GetCoins().AmountOf(poolRecord.ReservesA.Denom)
// 			balanceTokenB := traderAcc.GetCoins().AmountOf(poolRecord.ReservesB.Denom)
// 			if !balanceTokenA.IsPositive() || !balanceTokenB.IsPositive() {
// 				return false
// 			}
// 			return true
// 		})
// 		if !found {
// 			return simulation.NewOperationMsgBasic(types.ModuleName, "no-operation (no valid pool record and trader)", "", false, nil), nil, nil
// 		}

// 		// Select input token
// 		randInt, err := RandInt(r, sdk.OneInt(), sdk.NewInt(9))
// 		if err != nil {
// 			panic(err)
// 		}
// 		inputToken := poolRecord.ReservesA
// 		outputToken := poolRecord.ReservesB
// 		if randInt.Int64()%2 == 0 {
// 			inputToken = poolRecord.ReservesB
// 			outputToken = poolRecord.ReservesA
// 		}

// 		// Select entity (trader account or pool) with smaller token amount
// 		traderAcc := ak.GetAccount(ctx, trader.Address)
// 		maxTradeAmount := inputToken.Amount
// 		if traderAcc.GetCoins().AmountOf(inputToken.Denom).LT(inputToken.Amount) {
// 			maxTradeAmount = traderAcc.GetCoins().AmountOf(inputToken.Denom)
// 		}

// 		// Expected input token is between 2-10% of the max trade amount
// 		percentage, err := RandIntInclusive(r, sdk.NewInt(2), sdk.NewInt(10))
// 		if err != nil {
// 			panic(err)
// 		}
// 		tradeAmount := maxTradeAmount.Mul(percentage).Quo(sdk.NewInt(100))
// 		expectedInputToken := sdk.NewCoin(inputToken.Denom, tradeAmount)

// 		// Calculate exact output coin
// 		globalSwapFee := k.GetSwapFee(ctx)
// 		tradeAmountAfterFee := expectedInputToken.Amount.ToDec().Mul(sdk.OneDec().Sub(globalSwapFee)).TruncateInt()

// 		var outputAmt big.Int
// 		outputAmt.Mul(outputToken.Amount.BigInt(), tradeAmountAfterFee.BigInt())
// 		outputAmt.Quo(&outputAmt, inputToken.Amount.Add(tradeAmountAfterFee).BigInt())
// 		outputTokenAmount := sdk.NewIntFromBigInt(&outputAmt)
// 		exactOutputToken := sdk.NewCoin(outputToken.Denom, outputTokenAmount)

// 		// Get random slippage amount between 50-100%
// 		slippageRaw, err := RandIntInclusive(r, sdk.NewInt(50), sdk.NewInt(99))
// 		if err != nil {
// 			panic(err)
// 		}
// 		slippage := slippageRaw.ToDec().Quo(sdk.NewDec(100))

// 		// Generate random deadline
// 		blockTime := ctx.BlockHeader().Time
// 		deadline := genRandDeadline(r, blockTime)

// 		// Construct MsgSwapForExactTokens
// 		msg := types.NewMsgSwapForExactTokens(traderAcc.GetAddress(), expectedInputToken, exactOutputToken, slippage, deadline)
// 		err = msg.ValidateBasic()
// 		if err != nil {
// 			return noOpMsg, nil, nil
// 		}

// 		tx := helpers.GenTx(
// 			[]sdk.Msg{msg},
// 			sdk.NewCoins(),
// 			helpers.DefaultGenTxGas,
// 			chainID,
// 			[]uint64{traderAcc.GetAccountNumber()},
// 			[]uint64{traderAcc.GetSequence()},
// 			trader.PrivKey,
// 		)

// 		_, result, err := app.Deliver(tx)
// 		if err != nil {
// 			// to aid debugging, add the stack trace to the comment field of the returned opMsg
// 			return simulation.NewOperationMsg(msg, false, fmt.Sprintf("%+v", err)), nil, err
// 		}
// 		return simulation.NewOperationMsg(msg, true, result.Log), nil, nil
// 	}
// }

// // From a set of coins return a coin of the specified denom with 1-10% of the total amount
// func randCoinFromCoins(r *rand.Rand, coins sdk.Coins, denom string) sdk.Coin {
// 	percentOfBalance, err := RandIntInclusive(r, sdk.OneInt(), sdk.NewInt(10))
// 	if err != nil {
// 		panic(err)
// 	}
// 	balance := coins.AmountOf(denom)
// 	amtToken := balance.Mul(percentOfBalance).Quo(sdk.NewInt(100))
// 	return sdk.NewCoin(denom, amtToken)
// }

// func validateDepositor(ctx sdk.Context, k keeper.Keeper, allowedPool types.AllowedPool,
// 	depositor authexported.Account, blockTime time.Time) error {
// 	depositorCoins := depositor.SpendableCoins(blockTime)
// 	tokenABalance := depositorCoins.AmountOf(allowedPool.TokenA)
// 	tokenBBalance := depositorCoins.AmountOf(allowedPool.TokenB)

// 	oneThousand := sdk.NewInt(1000)
// 	if tokenABalance.LT(oneThousand) || tokenBBalance.LT(oneThousand) {
// 		return errorNotEnoughCoins
// 	}

// 	return nil
// }

// // findValidAccountAllowedPoolPair finds an account for which the callback func returns true
// func findValidAccountAllowedPoolPair(accounts []simulation.Account, pools types.AllowedPools,
// 	cb func(simulation.Account, types.AllowedPool) bool) (simulation.Account, types.AllowedPool, bool) {
// 	for _, pool := range pools {
// 		for _, acc := range accounts {
// 			if isValid := cb(acc, pool); isValid {
// 				return acc, pool, true
// 			}
// 		}
// 	}
// 	return simulation.Account{}, types.AllowedPool{}, false
// }

// // findValidAccountPoolRecordPair finds an account for which the callback func returns true
// func findValidAccountPoolRecordPair(accounts []simulation.Account, pools types.PoolRecords,
// 	cb func(simulation.Account, types.PoolRecord) bool) (simulation.Account, types.PoolRecord, bool) {
// 	for _, pool := range pools {
// 		for _, acc := range accounts {
// 			if isValid := cb(acc, pool); isValid {
// 				return acc, pool, true
// 			}
// 		}
// 	}
// 	return simulation.Account{}, types.PoolRecord{}, false
// }

// func genRandDeadline(r *rand.Rand, blockTime time.Time) int64 {
// 	// Set up deadline
// 	durationNanoseconds, err := RandIntInclusive(r,
// 		sdk.NewInt((time.Second * 10).Nanoseconds()), // ten seconds
// 		sdk.NewInt((time.Hour * 24).Nanoseconds()),   // one day
// 	)
// 	if err != nil {
// 		panic(err)
// 	}
// 	extraTime := time.Duration(durationNanoseconds.Int64())
// 	return blockTime.Add(extraTime).Unix()
// }

// // RandIntInclusive randomly generates an sdk.Int in the range [inclusiveMin, inclusiveMax]. It works for negative and positive integers.
// func RandIntInclusive(r *rand.Rand, inclusiveMin, inclusiveMax sdk.Int) (sdk.Int, error) {
// 	if inclusiveMin.GT(inclusiveMax) {
// 		return sdk.Int{}, fmt.Errorf("min larger than max")
// 	}
// 	return RandInt(r, inclusiveMin, inclusiveMax.Add(sdk.OneInt()))
// }

// // RandInt randomly generates an sdk.Int in the range [inclusiveMin, exclusiveMax). It works for negative and positive integers.
// func RandInt(r *rand.Rand, inclusiveMin, exclusiveMax sdk.Int) (sdk.Int, error) {
// 	// validate input
// 	if inclusiveMin.GTE(exclusiveMax) {
// 		return sdk.Int{}, fmt.Errorf("min larger or equal to max")
// 	}
// 	// shift the range to start at 0
// 	shiftedRange := exclusiveMax.Sub(inclusiveMin) // should always be positive given the check above
// 	// randomly pick from the shifted range
// 	shiftedRandInt := sdk.NewIntFromBigInt(new(big.Int).Rand(r, shiftedRange.BigInt()))
// 	// shift back to the original range
// 	return shiftedRandInt.Add(inclusiveMin), nil
// }