Compare commits

..

6 Commits

Author SHA1 Message Date
peilun-conflux
065b436fba
Merge 703d926a23 into e701c8fdbd 2024-10-14 17:52:53 +00:00
Peilun Li
703d926a23 Fix test. 2024-10-15 01:52:42 +08:00
Peilun Li
6a4b246e8b Merge branch 'main' into cache_mpt 2024-10-15 01:24:09 +08:00
Peilun Li
1c4257f692 Fix. 2024-10-15 01:00:54 +08:00
Peilun Li
9c2f6e9d7d Initialize LogManager with NodeManager. 2024-10-15 00:05:43 +08:00
Peilun Li
19829f1def Save layer size. 2024-10-14 21:58:39 +08:00
6 changed files with 258 additions and 126 deletions

View File

@ -16,7 +16,7 @@ use crate::merkle_tree::MerkleTreeWrite;
pub use crate::merkle_tree::{ pub use crate::merkle_tree::{
Algorithm, HashElement, MerkleTreeInitialData, MerkleTreeRead, ZERO_HASHES, Algorithm, HashElement, MerkleTreeInitialData, MerkleTreeRead, ZERO_HASHES,
}; };
pub use crate::node_manager::{EmptyNodeDatabase, NodeDatabase, NodeManager}; pub use crate::node_manager::{EmptyNodeDatabase, NodeDatabase, NodeManager, NodeTransaction};
pub use proof::{Proof, RangeProof}; pub use proof::{Proof, RangeProof};
pub use sha3::Sha3Algorithm; pub use sha3::Sha3Algorithm;
@ -47,6 +47,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
leaf_height, leaf_height,
_a: Default::default(), _a: Default::default(),
}; };
merkle.node_manager.start_transaction();
merkle.node_manager.add_layer(); merkle.node_manager.add_layer();
merkle.node_manager.append_nodes(0, &leaves); merkle.node_manager.append_nodes(0, &leaves);
if merkle.leaves() == 0 { if merkle.leaves() == 0 {
@ -71,49 +72,33 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
pub fn new_with_subtrees( pub fn new_with_subtrees(
node_db: Arc<dyn NodeDatabase<E>>, node_db: Arc<dyn NodeDatabase<E>>,
node_cache_capacity: usize, node_cache_capacity: usize,
initial_data: MerkleTreeInitialData<E>,
leaf_height: usize, leaf_height: usize,
start_tx_seq: Option<u64>,
) -> Result<Self> { ) -> Result<Self> {
let mut merkle = Self { let mut merkle = Self {
node_manager: NodeManager::new(node_db, node_cache_capacity), node_manager: NodeManager::new(node_db, node_cache_capacity)?,
delta_nodes_map: BTreeMap::new(), delta_nodes_map: BTreeMap::new(),
root_to_tx_seq_map: HashMap::new(), root_to_tx_seq_map: HashMap::new(),
min_depth: None, min_depth: None,
leaf_height, leaf_height,
_a: Default::default(), _a: Default::default(),
}; };
if merkle.height() == 0 {
merkle.node_manager.start_transaction();
merkle.node_manager.add_layer(); merkle.node_manager.add_layer();
if initial_data.subtree_list.is_empty() { merkle.node_manager.commit();
if let Some(seq) = start_tx_seq {
merkle.delta_nodes_map.insert(
seq,
DeltaNodes {
right_most_nodes: vec![],
},
);
}
return Ok(merkle);
}
merkle.append_subtree_list(initial_data.subtree_list)?;
merkle.commit(start_tx_seq);
for (index, h) in initial_data.known_leaves {
merkle.fill_leaf(index, h);
}
for (layer_index, position, h) in initial_data.extra_mpt_nodes {
// TODO: Delete duplicate nodes from DB.
merkle.update_node(layer_index, position, h);
} }
Ok(merkle) Ok(merkle)
} }
/// This is only used for the last chunk, so `leaf_height` is always 0 so far. /// This is only used for the last chunk, so `leaf_height` is always 0 so far.
pub fn new_with_depth(leaves: Vec<E>, depth: usize, start_tx_seq: Option<u64>) -> Self { pub fn new_with_depth(leaves: Vec<E>, depth: usize, start_tx_seq: Option<u64>) -> Self {
let mut node_manager = NodeManager::new_dummy();
node_manager.start_transaction();
if leaves.is_empty() { if leaves.is_empty() {
// Create an empty merkle tree with `depth`. // Create an empty merkle tree with `depth`.
let mut merkle = Self { let mut merkle = Self {
// dummy node manager for the last chunk. // dummy node manager for the last chunk.
node_manager: NodeManager::new_dummy(), node_manager,
delta_nodes_map: BTreeMap::new(), delta_nodes_map: BTreeMap::new(),
root_to_tx_seq_map: HashMap::new(), root_to_tx_seq_map: HashMap::new(),
min_depth: Some(depth), min_depth: Some(depth),
@ -135,7 +120,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
} else { } else {
let mut merkle = Self { let mut merkle = Self {
// dummy node manager for the last chunk. // dummy node manager for the last chunk.
node_manager: NodeManager::new_dummy(), node_manager,
delta_nodes_map: BTreeMap::new(), delta_nodes_map: BTreeMap::new(),
root_to_tx_seq_map: HashMap::new(), root_to_tx_seq_map: HashMap::new(),
min_depth: Some(depth), min_depth: Some(depth),
@ -160,8 +145,10 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// appending null is not allowed. // appending null is not allowed.
return; return;
} }
self.node_manager.start_transaction();
self.node_manager.push_node(0, new_leaf); self.node_manager.push_node(0, new_leaf);
self.recompute_after_append_leaves(self.leaves() - 1); self.recompute_after_append_leaves(self.leaves() - 1);
self.node_manager.commit();
} }
pub fn append_list(&mut self, leaf_list: Vec<E>) { pub fn append_list(&mut self, leaf_list: Vec<E>) {
@ -169,9 +156,11 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// appending null is not allowed. // appending null is not allowed.
return; return;
} }
self.node_manager.start_transaction();
let start_index = self.leaves(); let start_index = self.leaves();
self.node_manager.append_nodes(0, &leaf_list); self.node_manager.append_nodes(0, &leaf_list);
self.recompute_after_append_leaves(start_index); self.recompute_after_append_leaves(start_index);
self.node_manager.commit();
} }
/// Append a leaf list by providing their intermediate node hash. /// Append a leaf list by providing their intermediate node hash.
@ -184,9 +173,11 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// appending null is not allowed. // appending null is not allowed.
bail!("subtree_root is null"); bail!("subtree_root is null");
} }
self.node_manager.start_transaction();
let start_index = self.leaves(); let start_index = self.leaves();
self.append_subtree_inner(subtree_depth, subtree_root)?; self.append_subtree_inner(subtree_depth, subtree_root)?;
self.recompute_after_append_subtree(start_index, subtree_depth - 1); self.recompute_after_append_subtree(start_index, subtree_depth - 1);
self.node_manager.commit();
Ok(()) Ok(())
} }
@ -195,11 +186,13 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// appending null is not allowed. // appending null is not allowed.
bail!("subtree_list contains null"); bail!("subtree_list contains null");
} }
self.node_manager.start_transaction();
for (subtree_depth, subtree_root) in subtree_list { for (subtree_depth, subtree_root) in subtree_list {
let start_index = self.leaves(); let start_index = self.leaves();
self.append_subtree_inner(subtree_depth, subtree_root)?; self.append_subtree_inner(subtree_depth, subtree_root)?;
self.recompute_after_append_subtree(start_index, subtree_depth - 1); self.recompute_after_append_subtree(start_index, subtree_depth - 1);
} }
self.node_manager.commit();
Ok(()) Ok(())
} }
@ -210,6 +203,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// updating to null is not allowed. // updating to null is not allowed.
return; return;
} }
self.node_manager.start_transaction();
if self.layer_len(0) == 0 { if self.layer_len(0) == 0 {
// Special case for the first data. // Special case for the first data.
self.push_node(0, updated_leaf); self.push_node(0, updated_leaf);
@ -217,6 +211,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
self.update_node(0, self.layer_len(0) - 1, updated_leaf); self.update_node(0, self.layer_len(0) - 1, updated_leaf);
} }
self.recompute_after_append_leaves(self.leaves() - 1); self.recompute_after_append_leaves(self.leaves() - 1);
self.node_manager.commit();
} }
/// Fill an unknown `null` leaf with its real value. /// Fill an unknown `null` leaf with its real value.
@ -226,8 +221,10 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
if leaf == E::null() { if leaf == E::null() {
// fill leaf with null is not allowed. // fill leaf with null is not allowed.
} else if self.node(0, index) == E::null() { } else if self.node(0, index) == E::null() {
self.node_manager.start_transaction();
self.update_node(0, index, leaf); self.update_node(0, index, leaf);
self.recompute_after_fill_leaves(index, index + 1); self.recompute_after_fill_leaves(index, index + 1);
self.node_manager.commit();
} else if self.node(0, index) != leaf { } else if self.node(0, index) != leaf {
panic!( panic!(
"Fill with invalid leaf, index={} was={:?} get={:?}", "Fill with invalid leaf, index={} was={:?} get={:?}",
@ -246,6 +243,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
&mut self, &mut self,
proof: RangeProof<E>, proof: RangeProof<E>,
) -> Result<Vec<(usize, usize, E)>> { ) -> Result<Vec<(usize, usize, E)>> {
self.node_manager.start_transaction();
let mut updated_nodes = Vec::new(); let mut updated_nodes = Vec::new();
let mut left_nodes = proof.left_proof.proof_nodes_in_tree(); let mut left_nodes = proof.left_proof.proof_nodes_in_tree();
if left_nodes.len() >= self.leaf_height { if left_nodes.len() >= self.leaf_height {
@ -257,6 +255,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
updated_nodes updated_nodes
.append(&mut self.fill_with_proof(right_nodes.split_off(self.leaf_height))?); .append(&mut self.fill_with_proof(right_nodes.split_off(self.leaf_height))?);
} }
self.node_manager.commit();
Ok(updated_nodes) Ok(updated_nodes)
} }
@ -282,13 +281,16 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
if tx_merkle_nodes.is_empty() { if tx_merkle_nodes.is_empty() {
return Ok(Vec::new()); return Ok(Vec::new());
} }
self.node_manager.start_transaction();
let mut position_and_data = let mut position_and_data =
proof.file_proof_nodes_in_tree(tx_merkle_nodes, tx_merkle_nodes_size); proof.file_proof_nodes_in_tree(tx_merkle_nodes, tx_merkle_nodes_size);
let start_index = (start_index >> self.leaf_height) as usize; let start_index = (start_index >> self.leaf_height) as usize;
for (i, (position, _)) in position_and_data.iter_mut().enumerate() { for (i, (position, _)) in position_and_data.iter_mut().enumerate() {
*position += start_index >> i; *position += start_index >> i;
} }
self.fill_with_proof(position_and_data) let updated_nodes = self.fill_with_proof(position_and_data)?;
self.node_manager.commit();
Ok(updated_nodes)
} }
/// This assumes that the proof leaf is no lower than the tree leaf. It holds for both SegmentProof and ChunkProof. /// This assumes that the proof leaf is no lower than the tree leaf. It holds for both SegmentProof and ChunkProof.
@ -546,13 +548,14 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
// Any previous state of an empty tree is always empty. // Any previous state of an empty tree is always empty.
return Ok(()); return Ok(());
} }
self.node_manager.start_transaction();
let delta_nodes = self let delta_nodes = self
.delta_nodes_map .delta_nodes_map
.get(&tx_seq) .get(&tx_seq)
.ok_or_else(|| anyhow!("tx_seq unavailable, root={:?}", tx_seq))? .ok_or_else(|| anyhow!("tx_seq unavailable, root={:?}", tx_seq))?
.clone(); .clone();
// Dropping the upper layers that are not in the old merkle tree. // Dropping the upper layers that are not in the old merkle tree.
for height in (delta_nodes.right_most_nodes.len()..(self.height() - 1)).rev() { for height in (delta_nodes.right_most_nodes.len()..self.height()).rev() {
self.node_manager.truncate_layer(height); self.node_manager.truncate_layer(height);
} }
for (height, (last_index, right_most_node)) in for (height, (last_index, right_most_node)) in
@ -562,6 +565,24 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
self.update_node(height, *last_index, right_most_node.clone()) self.update_node(height, *last_index, right_most_node.clone())
} }
self.clear_after(tx_seq); self.clear_after(tx_seq);
self.node_manager.commit();
Ok(())
}
// Revert to a tx_seq not in `delta_nodes_map`.
// This is needed to revert the last unfinished tx after restart.
pub fn revert_to_leaves(&mut self, leaves: usize) -> Result<()> {
self.node_manager.start_transaction();
for height in (0..self.height()).rev() {
let kept_nodes = leaves >> height;
if kept_nodes == 0 {
self.node_manager.truncate_layer(height);
} else {
self.node_manager.truncate_nodes(height, kept_nodes + 1);
}
}
self.recompute_after_append_leaves(leaves);
self.node_manager.commit();
Ok(()) Ok(())
} }
@ -588,6 +609,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
} }
pub fn reset(&mut self) { pub fn reset(&mut self) {
self.node_manager.start_transaction();
for height in (0..self.height()).rev() { for height in (0..self.height()).rev() {
self.node_manager.truncate_layer(height); self.node_manager.truncate_layer(height);
} }
@ -598,6 +620,7 @@ impl<E: HashElement, A: Algorithm<E>> AppendMerkleTree<E, A> {
} else { } else {
self.node_manager.add_layer(); self.node_manager.add_layer();
} }
self.node_manager.commit();
} }
fn clear_after(&mut self, tx_seq: u64) { fn clear_after(&mut self, tx_seq: u64) {
@ -757,11 +780,10 @@ macro_rules! ensure_eq {
#[cfg(test)] #[cfg(test)]
mod tests { mod tests {
use crate::merkle_tree::MerkleTreeRead; use crate::merkle_tree::MerkleTreeRead;
use crate::node_manager::EmptyNodeDatabase;
use crate::sha3::Sha3Algorithm; use crate::sha3::Sha3Algorithm;
use crate::AppendMerkleTree; use crate::AppendMerkleTree;
use ethereum_types::H256; use ethereum_types::H256;
use std::sync::Arc;
#[test] #[test]
fn test_proof() { fn test_proof() {

View File

@ -1,6 +1,7 @@
use crate::HashElement; use crate::HashElement;
use anyhow::Result; use anyhow::Result;
use lru::LruCache; use lru::LruCache;
use std::any::Any;
use std::num::NonZeroUsize; use std::num::NonZeroUsize;
use std::sync::Arc; use std::sync::Arc;
use tracing::error; use tracing::error;
@ -9,15 +10,23 @@ pub struct NodeManager<E: HashElement> {
cache: LruCache<(usize, usize), E>, cache: LruCache<(usize, usize), E>,
layer_size: Vec<usize>, layer_size: Vec<usize>,
db: Arc<dyn NodeDatabase<E>>, db: Arc<dyn NodeDatabase<E>>,
db_tx: Option<Box<dyn NodeTransaction<E>>>,
} }
impl<E: HashElement> NodeManager<E> { impl<E: HashElement> NodeManager<E> {
pub fn new(db: Arc<dyn NodeDatabase<E>>, capacity: usize) -> Self { pub fn new(db: Arc<dyn NodeDatabase<E>>, capacity: usize) -> Result<Self> {
Self { let mut layer = 0;
cache: LruCache::new(NonZeroUsize::new(capacity).expect("capacity should be non-zero")), let mut layer_size = Vec::new();
layer_size: vec![], while let Some(size) = db.get_layer_size(layer)? {
db, layer_size.push(size);
layer += 1;
} }
Ok(Self {
cache: LruCache::new(NonZeroUsize::new(capacity).expect("capacity should be non-zero")),
layer_size,
db,
db_tx: None,
})
} }
pub fn new_dummy() -> Self { pub fn new_dummy() -> Self {
@ -25,25 +34,25 @@ impl<E: HashElement> NodeManager<E> {
cache: LruCache::unbounded(), cache: LruCache::unbounded(),
layer_size: vec![], layer_size: vec![],
db: Arc::new(EmptyNodeDatabase {}), db: Arc::new(EmptyNodeDatabase {}),
db_tx: None,
} }
} }
pub fn push_node(&mut self, layer: usize, node: E) { pub fn push_node(&mut self, layer: usize, node: E) {
self.add_node(layer, self.layer_size[layer], node); self.add_node(layer, self.layer_size[layer], node);
self.layer_size[layer] += 1; self.set_layer_size(layer, self.layer_size[layer] + 1);
} }
pub fn append_nodes(&mut self, layer: usize, nodes: &[E]) { pub fn append_nodes(&mut self, layer: usize, nodes: &[E]) {
let pos = &mut self.layer_size[layer]; let mut pos = self.layer_size[layer];
let mut saved_nodes = Vec::with_capacity(nodes.len()); let mut saved_nodes = Vec::with_capacity(nodes.len());
for node in nodes { for node in nodes {
self.cache.put((layer, *pos), node.clone()); self.cache.put((layer, pos), node.clone());
saved_nodes.push((layer, *pos, node)); saved_nodes.push((layer, pos, node));
*pos += 1; pos += 1;
}
if let Err(e) = self.db.save_node_list(&saved_nodes) {
error!("Failed to save node list: {:?}", e);
} }
self.set_layer_size(layer, pos);
self.db_tx().save_node_list(&saved_nodes);
} }
pub fn get_node(&self, layer: usize, pos: usize) -> Option<E> { pub fn get_node(&self, layer: usize, pos: usize) -> Option<E> {
@ -66,14 +75,17 @@ impl<E: HashElement> NodeManager<E> {
} }
pub fn add_node(&mut self, layer: usize, pos: usize, node: E) { pub fn add_node(&mut self, layer: usize, pos: usize, node: E) {
if let Err(e) = self.db.save_node(layer, pos, &node) { // No need to insert if the value is unchanged.
error!("Failed to save node: {}", e); if self.cache.get(&(layer, pos)) != Some(&node) {
} self.db_tx().save_node(layer, pos, &node);
self.cache.put((layer, pos), node); self.cache.put((layer, pos), node);
} }
}
pub fn add_layer(&mut self) { pub fn add_layer(&mut self) {
self.layer_size.push(0); self.layer_size.push(0);
let layer = self.layer_size.len() - 1;
self.db_tx().save_layer_size(layer, 0);
} }
pub fn layer_size(&self, layer: usize) -> usize { pub fn layer_size(&self, layer: usize) -> usize {
@ -90,18 +102,46 @@ impl<E: HashElement> NodeManager<E> {
self.cache.pop(&(layer, pos)); self.cache.pop(&(layer, pos));
removed_nodes.push((layer, pos)); removed_nodes.push((layer, pos));
} }
if let Err(e) = self.db.remove_node_list(&removed_nodes) { self.db_tx().remove_node_list(&removed_nodes);
error!("Failed to remove node list: {:?}", e); self.set_layer_size(layer, pos_end);
}
self.layer_size[layer] = pos_end;
} }
pub fn truncate_layer(&mut self, layer: usize) { pub fn truncate_layer(&mut self, layer: usize) {
self.truncate_nodes(layer, 0); self.truncate_nodes(layer, 0);
if layer == self.num_layers() - 1 { if layer == self.num_layers() - 1 {
self.layer_size.pop(); self.layer_size.pop();
self.db_tx().remove_layer_size(layer);
} }
} }
pub fn start_transaction(&mut self) {
if self.db_tx.is_none() {
error!("start new tx before commit");
}
self.db_tx = Some(self.db.start_transaction());
}
pub fn commit(&mut self) {
let tx = match self.db_tx.take() {
Some(tx) => tx,
None => {
error!("db_tx is None");
return;
}
};
if let Err(e) = self.db.commit(tx) {
error!("Failed to commit db transaction: {}", e);
}
}
fn db_tx(&mut self) -> &mut dyn NodeTransaction<E> {
(*self.db_tx.as_mut().expect("tx checked")).as_mut()
}
fn set_layer_size(&mut self, layer: usize, size: usize) {
self.layer_size[layer] = size;
self.db_tx().save_layer_size(layer, size);
}
} }
pub struct NodeIterator<'a, E: HashElement> { pub struct NodeIterator<'a, E: HashElement> {
@ -127,28 +167,52 @@ impl<'a, E: HashElement> Iterator for NodeIterator<'a, E> {
pub trait NodeDatabase<E: HashElement>: Send + Sync { pub trait NodeDatabase<E: HashElement>: Send + Sync {
fn get_node(&self, layer: usize, pos: usize) -> Result<Option<E>>; fn get_node(&self, layer: usize, pos: usize) -> Result<Option<E>>;
fn save_node(&self, layer: usize, pos: usize, node: &E) -> Result<()>; fn get_layer_size(&self, layer: usize) -> Result<Option<usize>>;
fn start_transaction(&self) -> Box<dyn NodeTransaction<E>>;
fn commit(&self, tx: Box<dyn NodeTransaction<E>>) -> Result<()>;
}
pub trait NodeTransaction<E: HashElement>: Send + Sync {
fn save_node(&mut self, layer: usize, pos: usize, node: &E);
/// `nodes` are a list of tuples `(layer, pos, node)`. /// `nodes` are a list of tuples `(layer, pos, node)`.
fn save_node_list(&self, nodes: &[(usize, usize, &E)]) -> Result<()>; fn save_node_list(&mut self, nodes: &[(usize, usize, &E)]);
fn remove_node_list(&self, nodes: &[(usize, usize)]) -> Result<()>; fn remove_node_list(&mut self, nodes: &[(usize, usize)]);
fn save_layer_size(&mut self, layer: usize, size: usize);
fn remove_layer_size(&mut self, layer: usize);
fn into_any(self: Box<Self>) -> Box<dyn Any>;
} }
/// A dummy database structure for in-memory merkle tree that will not read/write db. /// A dummy database structure for in-memory merkle tree that will not read/write db.
pub struct EmptyNodeDatabase {} pub struct EmptyNodeDatabase {}
pub struct EmptyNodeTransaction {}
impl<E: HashElement> NodeDatabase<E> for EmptyNodeDatabase { impl<E: HashElement> NodeDatabase<E> for EmptyNodeDatabase {
fn get_node(&self, _layer: usize, _pos: usize) -> Result<Option<E>> { fn get_node(&self, _layer: usize, _pos: usize) -> Result<Option<E>> {
Ok(None) Ok(None)
} }
fn get_layer_size(&self, _layer: usize) -> Result<Option<usize>> {
fn save_node(&self, _layer: usize, _pos: usize, _node: &E) -> Result<()> { Ok(None)
Ok(())
} }
fn start_transaction(&self) -> Box<dyn NodeTransaction<E>> {
fn save_node_list(&self, _nodes: &[(usize, usize, &E)]) -> Result<()> { Box::new(EmptyNodeTransaction {})
Ok(())
} }
fn commit(&self, _tx: Box<dyn NodeTransaction<E>>) -> Result<()> {
fn remove_node_list(&self, _nodes: &[(usize, usize)]) -> Result<()> {
Ok(()) Ok(())
} }
} }
impl<E: HashElement> NodeTransaction<E> for EmptyNodeTransaction {
fn save_node(&mut self, _layer: usize, _pos: usize, _node: &E) {}
fn save_node_list(&mut self, _nodes: &[(usize, usize, &E)]) {}
fn remove_node_list(&mut self, _nodes: &[(usize, usize)]) {}
fn save_layer_size(&mut self, _layer: usize, _size: usize) {}
fn remove_layer_size(&mut self, _layer: usize) {}
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
}
}

View File

@ -9,9 +9,11 @@ use crate::log_store::log_manager::{
}; };
use crate::log_store::{FlowRead, FlowSeal, FlowWrite}; use crate::log_store::{FlowRead, FlowSeal, FlowWrite};
use crate::{try_option, ZgsKeyValueDB}; use crate::{try_option, ZgsKeyValueDB};
use any::Any;
use anyhow::{anyhow, bail, Result}; use anyhow::{anyhow, bail, Result};
use append_merkle::{MerkleTreeInitialData, MerkleTreeRead, NodeDatabase}; use append_merkle::{MerkleTreeInitialData, MerkleTreeRead, NodeDatabase, NodeTransaction};
use itertools::Itertools; use itertools::Itertools;
use kvdb::DBTransaction;
use parking_lot::RwLock; use parking_lot::RwLock;
use shared_types::{ChunkArray, DataRoot, FlowProof, Merkle}; use shared_types::{ChunkArray, DataRoot, FlowProof, Merkle};
use ssz::{Decode, Encode}; use ssz::{Decode, Encode};
@ -20,7 +22,7 @@ use std::cmp::Ordering;
use std::collections::BTreeMap; use std::collections::BTreeMap;
use std::fmt::Debug; use std::fmt::Debug;
use std::sync::Arc; use std::sync::Arc;
use std::{cmp, mem}; use std::{any, cmp, mem};
use tracing::{debug, error, trace}; use tracing::{debug, error, trace};
use zgs_spec::{BYTES_PER_SECTOR, SEALS_PER_LOAD, SECTORS_PER_LOAD, SECTORS_PER_SEAL}; use zgs_spec::{BYTES_PER_SECTOR, SEALS_PER_LOAD, SECTORS_PER_LOAD, SECTORS_PER_SEAL};
@ -670,6 +672,14 @@ fn decode_mpt_node_key(data: &[u8]) -> Result<(usize, usize)> {
Ok((layer_index, position)) Ok((layer_index, position))
} }
fn layer_size_key(layer: usize) -> Vec<u8> {
let mut key = "layer_size".as_bytes().to_vec();
key.extend_from_slice(&layer.to_be_bytes());
key
}
pub struct NodeDBTransaction(DBTransaction);
impl NodeDatabase<DataRoot> for FlowDBStore { impl NodeDatabase<DataRoot> for FlowDBStore {
fn get_node(&self, layer: usize, pos: usize) -> Result<Option<DataRoot>> { fn get_node(&self, layer: usize, pos: usize) -> Result<Option<DataRoot>> {
Ok(self Ok(self
@ -678,36 +688,67 @@ impl NodeDatabase<DataRoot> for FlowDBStore {
.map(|v| DataRoot::from_slice(&v))) .map(|v| DataRoot::from_slice(&v)))
} }
fn save_node(&self, layer: usize, pos: usize, node: &DataRoot) -> Result<()> { fn get_layer_size(&self, layer: usize) -> Result<Option<usize>> {
let mut tx = self.kvdb.transaction(); match self.kvdb.get(COL_FLOW_MPT_NODES, &layer_size_key(layer))? {
tx.put( Some(v) => Ok(Some(try_decode_usize(&v)?)),
None => Ok(None),
}
}
fn start_transaction(&self) -> Box<dyn NodeTransaction<DataRoot>> {
Box::new(NodeDBTransaction(self.kvdb.transaction()))
}
fn commit(&self, tx: Box<dyn NodeTransaction<DataRoot>>) -> Result<()> {
let db_tx: Box<NodeDBTransaction> = tx
.into_any()
.downcast()
.map_err(|e| anyhow!("downcast failed, e={:?}", e))?;
self.kvdb.write(db_tx.0).map_err(Into::into)
}
}
impl NodeTransaction<DataRoot> for NodeDBTransaction {
fn save_node(&mut self, layer: usize, pos: usize, node: &DataRoot) {
self.0.put(
COL_FLOW_MPT_NODES, COL_FLOW_MPT_NODES,
&encode_mpt_node_key(layer, pos), &encode_mpt_node_key(layer, pos),
node.as_bytes(), node.as_bytes(),
); );
Ok(self.kvdb.write(tx)?)
} }
fn save_node_list(&self, nodes: &[(usize, usize, &DataRoot)]) -> Result<()> { fn save_node_list(&mut self, nodes: &[(usize, usize, &DataRoot)]) {
let mut tx = self.kvdb.transaction();
for (layer_index, position, data) in nodes { for (layer_index, position, data) in nodes {
tx.put( self.0.put(
COL_FLOW_MPT_NODES, COL_FLOW_MPT_NODES,
&encode_mpt_node_key(*layer_index, *position), &encode_mpt_node_key(*layer_index, *position),
data.as_bytes(), data.as_bytes(),
); );
} }
Ok(self.kvdb.write(tx)?)
} }
fn remove_node_list(&self, nodes: &[(usize, usize)]) -> Result<()> { fn remove_node_list(&mut self, nodes: &[(usize, usize)]) {
let mut tx = self.kvdb.transaction();
for (layer_index, position) in nodes { for (layer_index, position) in nodes {
tx.delete( self.0.delete(
COL_FLOW_MPT_NODES, COL_FLOW_MPT_NODES,
&encode_mpt_node_key(*layer_index, *position), &encode_mpt_node_key(*layer_index, *position),
); );
} }
Ok(self.kvdb.write(tx)?) }
fn save_layer_size(&mut self, layer: usize, size: usize) {
self.0.put(
COL_FLOW_MPT_NODES,
&layer_size_key(layer),
&size.to_be_bytes(),
);
}
fn remove_layer_size(&mut self, layer: usize) {
self.0.delete(COL_FLOW_MPT_NODES, &layer_size_key(layer));
}
fn into_any(self: Box<Self>) -> Box<dyn Any> {
self
} }
} }

View File

@ -629,12 +629,8 @@ impl LogManager {
let tx_store = TransactionStore::new(db.clone())?; let tx_store = TransactionStore::new(db.clone())?;
let flow_db = Arc::new(FlowDBStore::new(db.clone())); let flow_db = Arc::new(FlowDBStore::new(db.clone()));
let flow_store = Arc::new(FlowStore::new(flow_db.clone(), config.flow.clone())); let flow_store = Arc::new(FlowStore::new(flow_db.clone(), config.flow.clone()));
let mut initial_data = flow_store.get_chunk_root_list()?; // If the last tx `put_tx` does not complete, we will revert it in `pora_chunks_merkle`
// If the last tx `put_tx` does not complete, we will revert it in `initial_data.subtree_list` // first and call `put_tx` later.
// first and call `put_tx` later. The known leaves in its data will be saved in `extra_leaves`
// and inserted later.
let mut extra_leaves = Vec::new();
let next_tx_seq = tx_store.next_tx_seq(); let next_tx_seq = tx_store.next_tx_seq();
let mut start_tx_seq = if next_tx_seq > 0 { let mut start_tx_seq = if next_tx_seq > 0 {
Some(next_tx_seq - 1) Some(next_tx_seq - 1)
@ -642,13 +638,19 @@ impl LogManager {
None None
}; };
let mut last_tx_to_insert = None; let mut last_tx_to_insert = None;
let mut pora_chunks_merkle = Merkle::new_with_subtrees(
flow_db,
config.flow.merkle_node_cache_capacity,
log2_pow2(PORA_CHUNK_SIZE),
)?;
if let Some(last_tx_seq) = start_tx_seq { if let Some(last_tx_seq) = start_tx_seq {
if !tx_store.check_tx_completed(last_tx_seq)? { if !tx_store.check_tx_completed(last_tx_seq)? {
// Last tx not finalized, we need to check if its `put_tx` is completed. // Last tx not finalized, we need to check if its `put_tx` is completed.
let last_tx = tx_store let last_tx = tx_store
.get_tx_by_seq_number(last_tx_seq)? .get_tx_by_seq_number(last_tx_seq)?
.expect("tx missing"); .expect("tx missing");
let mut current_len = initial_data.leaves(); let current_len = pora_chunks_merkle.leaves();
let expected_len = let expected_len =
sector_to_segment(last_tx.start_entry_index + last_tx.num_entries() as u64); sector_to_segment(last_tx.start_entry_index + last_tx.num_entries() as u64);
match expected_len.cmp(&(current_len)) { match expected_len.cmp(&(current_len)) {
@ -678,42 +680,15 @@ impl LogManager {
previous_tx.start_entry_index + previous_tx.num_entries() as u64, previous_tx.start_entry_index + previous_tx.num_entries() as u64,
); );
if current_len > expected_len { if current_len > expected_len {
while let Some((subtree_depth, _)) = initial_data.subtree_list.pop() pora_chunks_merkle.revert_to_leaves(expected_len)?;
{
current_len -= 1 << (subtree_depth - 1);
if current_len == expected_len {
break;
} }
} start_tx_seq = Some(previous_tx.seq);
} else {
warn!(
"revert last tx with no-op: {} {}",
current_len, expected_len
);
}
assert_eq!(current_len, expected_len);
while let Some((index, h)) = initial_data.known_leaves.pop() {
if index < current_len {
initial_data.known_leaves.push((index, h));
break;
} else {
extra_leaves.push((index, h));
}
}
start_tx_seq = Some(last_tx_seq - 1);
}; };
} }
} }
} }
} }
let mut pora_chunks_merkle = Merkle::new_with_subtrees(
flow_db,
config.flow.merkle_node_cache_capacity,
initial_data,
log2_pow2(PORA_CHUNK_SIZE),
start_tx_seq,
)?;
let last_chunk_merkle = match start_tx_seq { let last_chunk_merkle = match start_tx_seq {
Some(tx_seq) => { Some(tx_seq) => {
tx_store.rebuild_last_chunk_merkle(pora_chunks_merkle.leaves(), tx_seq)? tx_store.rebuild_last_chunk_merkle(pora_chunks_merkle.leaves(), tx_seq)?
@ -751,18 +726,7 @@ impl LogManager {
log_manager.start_receiver(receiver, executor); log_manager.start_receiver(receiver, executor);
if let Some(tx) = last_tx_to_insert { if let Some(tx) = last_tx_to_insert {
log_manager.revert_to(tx.seq - 1)?;
log_manager.put_tx(tx)?; log_manager.put_tx(tx)?;
let mut merkle = log_manager.merkle.write();
for (index, h) in extra_leaves {
if index < merkle.pora_chunks_merkle.leaves() {
merkle.pora_chunks_merkle.fill_leaf(index, h);
} else {
error!("out of range extra leaf: index={} hash={:?}", index, h);
}
}
} else {
assert!(extra_leaves.is_empty());
} }
log_manager log_manager
.merkle .merkle

View File

@ -3,14 +3,12 @@ use crate::log_store::log_manager::{
PORA_CHUNK_SIZE, PORA_CHUNK_SIZE,
}; };
use crate::log_store::{LogStoreChunkRead, LogStoreChunkWrite, LogStoreRead, LogStoreWrite}; use crate::log_store::{LogStoreChunkRead, LogStoreChunkWrite, LogStoreRead, LogStoreWrite};
use append_merkle::{ use append_merkle::{Algorithm, AppendMerkleTree, MerkleTreeRead, Sha3Algorithm};
Algorithm, AppendMerkleTree, EmptyNodeDatabase, MerkleTreeRead, Sha3Algorithm,
};
use ethereum_types::H256; use ethereum_types::H256;
use rand::random; use rand::random;
use shared_types::{compute_padded_chunk_size, ChunkArray, Transaction, CHUNK_SIZE}; use shared_types::{compute_padded_chunk_size, ChunkArray, Transaction, CHUNK_SIZE};
use std::cmp; use std::cmp;
use std::sync::Arc;
use task_executor::test_utils::TestRuntime; use task_executor::test_utils::TestRuntime;
#[test] #[test]

43
tests/node_cache_test.py Executable file
View File

@ -0,0 +1,43 @@
#!/usr/bin/env python3
from test_framework.test_framework import TestFramework
from utility.submission import create_submission, submit_data
from utility.utils import wait_until
class NodeCacheTest(TestFramework):
def setup_params(self):
self.zgs_node_configs[0] = {
"merkle_node_cache_capacity": 1024,
}
def run_test(self):
client = self.nodes[0]
chunk_data = b"\x02" * 256 * 1024 * 1024 * 3
submissions, data_root = create_submission(chunk_data)
self.contract.submit(submissions)
wait_until(lambda: self.contract.num_submissions() == 1)
wait_until(lambda: client.zgs_get_file_info(data_root) is not None)
segment = submit_data(client, chunk_data)
self.log.info("segment: %s", len(segment))
wait_until(lambda: client.zgs_get_file_info(data_root)["finalized"])
self.stop_storage_node(0)
self.start_storage_node(0)
self.nodes[0].wait_for_rpc_connection()
chunk_data = b"\x03" * 256 * (1024 * 765 + 5)
submissions, data_root = create_submission(chunk_data)
self.contract.submit(submissions)
wait_until(lambda: self.contract.num_submissions() == 2)
wait_until(lambda: client.zgs_get_file_info(data_root) is not None)
segment = submit_data(client, chunk_data)
self.log.info("segment: %s", len(segment))
wait_until(lambda: client.zgs_get_file_info(data_root)["finalized"])
if __name__ == "__main__":
NodeCacheTest().main()