0g-storage-node/version-meld/enr/README.md
leopardracer 16e70bde68
Some checks are pending
abi-consistent-check / build-and-compare (push) Waiting to run
code-coverage / unittest-cov (push) Waiting to run
rust / check (push) Waiting to run
rust / test (push) Waiting to run
rust / lints (push) Waiting to run
functional-test / test (push) Waiting to run
fix: typos in documentation files (#265)
* Update README.md
2024-11-13 09:07:06 +08:00

5.5 KiB

enr

Build Status Doc Status Crates
Status

Documentation at docs.rs

This crate contains an implementation of an Ethereum Node Record (ENR) as specified by EIP-778 extended to allow for the use of ed25519 keys.

An ENR is a signed, key-value record which has an associated NodeId (a 32-byte identifier). Updating/modifying an ENR requires an EnrKey in order to re-sign the record with the associated key-pair.

ENR's are identified by their sequence number. When updating an ENR, the sequence number is increased.

Different identity schemes can be used to define the node id and signatures. Currently only the "v4" identity is supported and is set by default.

Signing Algorithms

User's wishing to implement their own signing algorithms simply need to implement the EnrKey trait and apply it to an Enr.

By default, k256::SigningKey implement EnrKey and can be used to sign and verify ENR records. This library also implements EnrKey for ed25519_dalek::Keypair via the ed25519 feature flag.

Furthermore, a CombinedKey is provided if the ed25519 feature flag is set, which provides an ENR type that can support both secp256k1 and ed25519 signed ENR records. Examples of the use of each of these key types is given below.

Features

This crate supports a number of features.

  • serde: Allows for serde serialization and deserialization for ENRs.
  • ed25519: Provides support for ed25519_dalek keypair types.
  • rust-secp256k1: Uses c-secp256k1 for secp256k1 keys.

These can be enabled via adding the feature flag in your Cargo.toml

enr = { version = "*", features = ["serde", "ed25519", "rust-secp256k1"] }

Examples

To build an ENR, an EnrBuilder is provided.

Building an ENR with the default k256 key type

use enr::{EnrBuilder, k256};
use std::net::Ipv4Addr;
use rand::thread_rng;

// generate a random secp256k1 key
let mut rng = thread_rng();
let key = k256::ecdsa::SigningKey::random(&mut rng);

let ip = Ipv4Addr::new(192,168,0,1);
let enr = EnrBuilder::new("v4").ip4(ip).tcp4(8000).build(&key).unwrap();

assert_eq!(enr.ip4(), Some("192.168.0.1".parse().unwrap()));
assert_eq!(enr.id(), Some("v4".into()));

Building an ENR with the CombinedKey type (support for multiple signing algorithms).

Note the ed25519 feature flag must be set. This makes use of the EnrBuilder struct.

use enr::{EnrBuilder, CombinedKey};
use std::net::Ipv4Addr;

// create a new secp256k1 key
let key = CombinedKey::generate_secp256k1();

// or create a new ed25519 key
let key = CombinedKey::generate_ed25519();

let ip = Ipv4Addr::new(192,168,0,1);
let enr = EnrBuilder::new("v4").ip4(ip).tcp4(8000).build(&key).unwrap();

assert_eq!(enr.ip4(), Some("192.168.0.1".parse().unwrap()));
assert_eq!(enr.id(), Some("v4".into()));

Modifying an ENR

ENR fields can be added and modified using the getters/setters on Enr. A custom field can be added using insert and retrieved with get.

use enr::{EnrBuilder, k256::ecdsa::SigningKey, Enr};
use std::net::Ipv4Addr;
use rand::thread_rng;

// specify the type of ENR
type DefaultEnr = Enr<SigningKey>;

// generate a random secp256k1 key
let mut rng = thread_rng();
let key = SigningKey::random(&mut rng);

let ip = Ipv4Addr::new(192,168,0,1);
let mut enr = EnrBuilder::new("v4").ip4(ip).tcp4(8000).build(&key).unwrap();

enr.set_tcp4(8001, &key);
// set a custom key
enr.insert("custom_key", &vec![0,0,1], &key);

// encode to base64
let base_64_string = enr.to_base64();

// decode from base64
let decoded_enr: DefaultEnr = base_64_string.parse().unwrap();

assert_eq!(decoded_enr.ip4(), Some("192.168.0.1".parse().unwrap()));
assert_eq!(decoded_enr.id(), Some("v4".into()));
assert_eq!(decoded_enr.tcp4(), Some(8001));
assert_eq!(decoded_enr.get("custom_key"), Some(vec![0,0,1].as_slice()));

Encoding/Decoding ENR's of various key types

use enr::{EnrBuilder, k256::ecdsa::SigningKey, Enr, ed25519_dalek::Keypair, CombinedKey};
use std::net::Ipv4Addr;
use rand::thread_rng;
use rand::Rng;

// generate a random secp256k1 key
let mut rng = thread_rng();
let key = SigningKey::random(&mut rng);
let ip = Ipv4Addr::new(192,168,0,1);
let enr_secp256k1 = EnrBuilder::new("v4").ip4(ip).tcp4(8000).build(&key).unwrap();

// encode to base64
let base64_string_secp256k1 = enr_secp256k1.to_base64();

// generate a random ed25519 key
let mut rng = rand_07::thread_rng();
let key = Keypair::generate(&mut rng);
let enr_ed25519 = EnrBuilder::new("v4").ip4(ip).tcp4(8000).build(&key).unwrap();

// encode to base64
let base64_string_ed25519 = enr_ed25519.to_base64();

// decode base64 strings of varying key types
// decode the secp256k1 with default Enr
let decoded_enr_secp256k1: Enr<k256::ecdsa::SigningKey> = base64_string_secp256k1.parse().unwrap();
// decode ed25519 ENRs
let decoded_enr_ed25519: Enr<ed25519_dalek::Keypair> = base64_string_ed25519.parse().unwrap();

// use the combined key to be able to decode either
let decoded_enr: Enr<CombinedKey> = base64_string_secp256k1.parse().unwrap();
let decoded_enr: Enr<CombinedKey> = base64_string_ed25519.parse().unwrap();