Add files via upload

This commit is contained in:
Tan XiHong 2024-08-13 18:22:54 +08:00 committed by GitHub
commit 988565b500
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
21 changed files with 1198 additions and 0 deletions

1
CONTRIBUTING.md Normal file
View File

@ -0,0 +1 @@
Please always push on the experimental to ensure we don't mess with the main branch. All the test will be done on the experimental and will be pushed to the main branch after few days of testing.

BIN
demo.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 11 MiB

BIN
docs/demo.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 MiB

BIN
docs/gui-demo.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

1
models/instructions.txt Normal file
View File

@ -0,0 +1 @@
just put the models in this folder

0
modules/__init__.py Normal file
View File

20
modules/capturer.py Normal file
View File

@ -0,0 +1,20 @@
from typing import Any
import cv2
def get_video_frame(video_path: str, frame_number: int = 0) -> Any:
capture = cv2.VideoCapture(video_path)
frame_total = capture.get(cv2.CAP_PROP_FRAME_COUNT)
capture.set(cv2.CAP_PROP_POS_FRAMES, min(frame_total, frame_number - 1))
has_frame, frame = capture.read()
capture.release()
if has_frame:
return frame
return None
def get_video_frame_total(video_path: str) -> int:
capture = cv2.VideoCapture(video_path)
video_frame_total = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
capture.release()
return video_frame_total

247
modules/core.py Normal file
View File

@ -0,0 +1,247 @@
import os
import sys
# single thread doubles cuda performance - needs to be set before torch import
if any(arg.startswith('--execution-provider') for arg in sys.argv):
os.environ['OMP_NUM_THREADS'] = '1'
# reduce tensorflow log level
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import warnings
from typing import List
import platform
import signal
import shutil
import argparse
import torch
import onnxruntime
import tensorflow
import modules.globals
import modules.metadata
import modules.ui as ui
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import has_image_extension, is_image, is_video, detect_fps, create_video, extract_frames, get_temp_frame_paths, restore_audio, create_temp, move_temp, clean_temp, normalize_output_path
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
del torch
warnings.filterwarnings('ignore', category=FutureWarning, module='insightface')
warnings.filterwarnings('ignore', category=UserWarning, module='torchvision')
def parse_args() -> None:
signal.signal(signal.SIGINT, lambda signal_number, frame: destroy())
program = argparse.ArgumentParser()
program.add_argument('-s', '--source', help='select an source image', dest='source_path')
program.add_argument('-t', '--target', help='select an target image or video', dest='target_path')
program.add_argument('-o', '--output', help='select output file or directory', dest='output_path')
program.add_argument('--frame-processor', help='pipeline of frame processors', dest='frame_processor', default=['face_swapper'], choices=['face_swapper', 'face_enhancer'], nargs='+')
program.add_argument('--keep-fps', help='keep original fps', dest='keep_fps', action='store_true', default=False)
program.add_argument('--keep-audio', help='keep original audio', dest='keep_audio', action='store_true', default=True)
program.add_argument('--keep-frames', help='keep temporary frames', dest='keep_frames', action='store_true', default=False)
program.add_argument('--many-faces', help='process every face', dest='many_faces', action='store_true', default=False)
program.add_argument('--video-encoder', help='adjust output video encoder', dest='video_encoder', default='libx264', choices=['libx264', 'libx265', 'libvpx-vp9'])
program.add_argument('--video-quality', help='adjust output video quality', dest='video_quality', type=int, default=18, choices=range(52), metavar='[0-51]')
program.add_argument('--max-memory', help='maximum amount of RAM in GB', dest='max_memory', type=int, default=suggest_max_memory())
program.add_argument('--execution-provider', help='execution provider', dest='execution_provider', default=['cpu'], choices=suggest_execution_providers(), nargs='+')
program.add_argument('--execution-threads', help='number of execution threads', dest='execution_threads', type=int, default=suggest_execution_threads())
program.add_argument('-v', '--version', action='version', version=f'{modules.metadata.name} {modules.metadata.version}')
# register deprecated args
program.add_argument('-f', '--face', help=argparse.SUPPRESS, dest='source_path_deprecated')
program.add_argument('--cpu-cores', help=argparse.SUPPRESS, dest='cpu_cores_deprecated', type=int)
program.add_argument('--gpu-vendor', help=argparse.SUPPRESS, dest='gpu_vendor_deprecated')
program.add_argument('--gpu-threads', help=argparse.SUPPRESS, dest='gpu_threads_deprecated', type=int)
args = program.parse_args()
modules.globals.source_path = args.source_path
modules.globals.target_path = args.target_path
modules.globals.output_path = normalize_output_path(modules.globals.source_path, modules.globals.target_path, args.output_path)
modules.globals.frame_processors = args.frame_processor
modules.globals.headless = args.source_path or args.target_path or args.output_path
modules.globals.keep_fps = args.keep_fps
modules.globals.keep_audio = args.keep_audio
modules.globals.keep_frames = args.keep_frames
modules.globals.many_faces = args.many_faces
modules.globals.video_encoder = args.video_encoder
modules.globals.video_quality = args.video_quality
modules.globals.max_memory = args.max_memory
modules.globals.execution_providers = decode_execution_providers(args.execution_provider)
modules.globals.execution_threads = args.execution_threads
#for ENHANCER tumbler:
if 'face_enhancer' in args.frame_processor:
modules.globals.fp_ui['face_enhancer'] = True
else:
modules.globals.fp_ui['face_enhancer'] = False
modules.globals.nsfw = False
# translate deprecated args
if args.source_path_deprecated:
print('\033[33mArgument -f and --face are deprecated. Use -s and --source instead.\033[0m')
modules.globals.source_path = args.source_path_deprecated
modules.globals.output_path = normalize_output_path(args.source_path_deprecated, modules.globals.target_path, args.output_path)
if args.cpu_cores_deprecated:
print('\033[33mArgument --cpu-cores is deprecated. Use --execution-threads instead.\033[0m')
modules.globals.execution_threads = args.cpu_cores_deprecated
if args.gpu_vendor_deprecated == 'apple':
print('\033[33mArgument --gpu-vendor apple is deprecated. Use --execution-provider coreml instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['coreml'])
if args.gpu_vendor_deprecated == 'nvidia':
print('\033[33mArgument --gpu-vendor nvidia is deprecated. Use --execution-provider cuda instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['cuda'])
if args.gpu_vendor_deprecated == 'amd':
print('\033[33mArgument --gpu-vendor amd is deprecated. Use --execution-provider cuda instead.\033[0m')
modules.globals.execution_providers = decode_execution_providers(['rocm'])
if args.gpu_threads_deprecated:
print('\033[33mArgument --gpu-threads is deprecated. Use --execution-threads instead.\033[0m')
modules.globals.execution_threads = args.gpu_threads_deprecated
def encode_execution_providers(execution_providers: List[str]) -> List[str]:
return [execution_provider.replace('ExecutionProvider', '').lower() for execution_provider in execution_providers]
def decode_execution_providers(execution_providers: List[str]) -> List[str]:
return [provider for provider, encoded_execution_provider in zip(onnxruntime.get_available_providers(), encode_execution_providers(onnxruntime.get_available_providers()))
if any(execution_provider in encoded_execution_provider for execution_provider in execution_providers)]
def suggest_max_memory() -> int:
if platform.system().lower() == 'darwin':
return 4
return 16
def suggest_execution_providers() -> List[str]:
return encode_execution_providers(onnxruntime.get_available_providers())
def suggest_execution_threads() -> int:
if 'DmlExecutionProvider' in modules.globals.execution_providers:
return 1
if 'ROCMExecutionProvider' in modules.globals.execution_providers:
return 1
return 8
def limit_resources() -> None:
# prevent tensorflow memory leak
gpus = tensorflow.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tensorflow.config.experimental.set_memory_growth(gpu, True)
# limit memory usage
if modules.globals.max_memory:
memory = modules.globals.max_memory * 1024 ** 3
if platform.system().lower() == 'darwin':
memory = modules.globals.max_memory * 1024 ** 6
if platform.system().lower() == 'windows':
import ctypes
kernel32 = ctypes.windll.kernel32
kernel32.SetProcessWorkingSetSize(-1, ctypes.c_size_t(memory), ctypes.c_size_t(memory))
else:
import resource
resource.setrlimit(resource.RLIMIT_DATA, (memory, memory))
def release_resources() -> None:
if 'CUDAExecutionProvider' in modules.globals.execution_providers:
torch.cuda.empty_cache()
def pre_check() -> bool:
if sys.version_info < (3, 9):
update_status('Python version is not supported - please upgrade to 3.9 or higher.')
return False
if not shutil.which('ffmpeg'):
update_status('ffmpeg is not installed.')
return False
return True
def update_status(message: str, scope: str = 'DLC.CORE') -> None:
print(f'[{scope}] {message}')
if not modules.globals.headless:
ui.update_status(message)
def start() -> None:
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_start():
return
# process image to image
if has_image_extension(modules.globals.target_path):
if modules.globals.nsfw == False:
from modules.predicter import predict_image
if predict_image(modules.globals.target_path):
destroy()
shutil.copy2(modules.globals.target_path, modules.globals.output_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_image(modules.globals.source_path, modules.globals.output_path, modules.globals.output_path)
release_resources()
if is_image(modules.globals.target_path):
update_status('Processing to image succeed!')
else:
update_status('Processing to image failed!')
return
# process image to videos
if modules.globals.nsfw == False:
from modules.predicter import predict_video
if predict_video(modules.globals.target_path):
destroy()
update_status('Creating temp resources...')
create_temp(modules.globals.target_path)
update_status('Extracting frames...')
extract_frames(modules.globals.target_path)
temp_frame_paths = get_temp_frame_paths(modules.globals.target_path)
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
update_status('Progressing...', frame_processor.NAME)
frame_processor.process_video(modules.globals.source_path, temp_frame_paths)
release_resources()
# handles fps
if modules.globals.keep_fps:
update_status('Detecting fps...')
fps = detect_fps(modules.globals.target_path)
update_status(f'Creating video with {fps} fps...')
create_video(modules.globals.target_path, fps)
else:
update_status('Creating video with 30.0 fps...')
create_video(modules.globals.target_path)
# handle audio
if modules.globals.keep_audio:
if modules.globals.keep_fps:
update_status('Restoring audio...')
else:
update_status('Restoring audio might cause issues as fps are not kept...')
restore_audio(modules.globals.target_path, modules.globals.output_path)
else:
move_temp(modules.globals.target_path, modules.globals.output_path)
# clean and validate
clean_temp(modules.globals.target_path)
if is_video(modules.globals.target_path):
update_status('Processing to video succeed!')
else:
update_status('Processing to video failed!')
def destroy() -> None:
if modules.globals.target_path:
clean_temp(modules.globals.target_path)
quit()
def run() -> None:
parse_args()
if not pre_check():
return
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
if not frame_processor.pre_check():
return
limit_resources()
if modules.globals.headless:
start()
else:
window = ui.init(start, destroy)
window.mainloop()

31
modules/face_analyser.py Normal file
View File

@ -0,0 +1,31 @@
from typing import Any
import insightface
import modules.globals
from modules.typing import Frame
FACE_ANALYSER = None
def get_face_analyser() -> Any:
global FACE_ANALYSER
if FACE_ANALYSER is None:
FACE_ANALYSER = insightface.app.FaceAnalysis(name='buffalo_l', providers=modules.globals.execution_providers)
FACE_ANALYSER.prepare(ctx_id=0, det_size=(640, 640))
return FACE_ANALYSER
def get_one_face(frame: Frame) -> Any:
face = get_face_analyser().get(frame)
try:
return min(face, key=lambda x: x.bbox[0])
except ValueError:
return None
def get_many_faces(frame: Frame) -> Any:
try:
return get_face_analyser().get(frame)
except IndexError:
return None

30
modules/globals.py Normal file
View File

@ -0,0 +1,30 @@
import os
from typing import List, Dict
ROOT_DIR = os.path.dirname(os.path.abspath(__file__))
WORKFLOW_DIR = os.path.join(ROOT_DIR, 'workflow')
file_types = [
('Image', ('*.png','*.jpg','*.jpeg','*.gif','*.bmp')),
('Video', ('*.mp4','*.mkv'))
]
source_path = None
target_path = None
output_path = None
frame_processors: List[str] = []
keep_fps = None
keep_audio = None
keep_frames = None
many_faces = None
video_encoder = None
video_quality = None
max_memory = None
execution_providers: List[str] = []
execution_threads = None
headless = None
log_level = 'error'
fp_ui: Dict[str, bool] = {}
nsfw = None
camera_input_combobox = None
webcam_preview_running = False

3
modules/metadata.py Normal file
View File

@ -0,0 +1,3 @@
name = 'Deep Live Cam'
version = '1.3.0'
edition = 'Portable'

25
modules/predicter.py Normal file
View File

@ -0,0 +1,25 @@
import numpy
import opennsfw2
from PIL import Image
from modules.typing import Frame
MAX_PROBABILITY = 0.85
def predict_frame(target_frame: Frame) -> bool:
image = Image.fromarray(target_frame)
image = opennsfw2.preprocess_image(image, opennsfw2.Preprocessing.YAHOO)
model = opennsfw2.make_open_nsfw_model()
views = numpy.expand_dims(image, axis=0)
_, probability = model.predict(views)[0]
return probability > MAX_PROBABILITY
def predict_image(target_path: str) -> bool:
return opennsfw2.predict_image(target_path) > MAX_PROBABILITY
def predict_video(target_path: str) -> bool:
_, probabilities = opennsfw2.predict_video_frames(video_path=target_path, frame_interval=100)
return any(probability > MAX_PROBABILITY for probability in probabilities)

View File

View File

View File

@ -0,0 +1,73 @@
import sys
import importlib
from concurrent.futures import ThreadPoolExecutor
from types import ModuleType
from typing import Any, List, Callable
from tqdm import tqdm
import modules
import modules.globals
FRAME_PROCESSORS_MODULES: List[ModuleType] = []
FRAME_PROCESSORS_INTERFACE = [
'pre_check',
'pre_start',
'process_frame',
'process_image',
'process_video'
]
def load_frame_processor_module(frame_processor: str) -> Any:
try:
frame_processor_module = importlib.import_module(f'modules.processors.frame.{frame_processor}')
for method_name in FRAME_PROCESSORS_INTERFACE:
if not hasattr(frame_processor_module, method_name):
sys.exit()
except ImportError:
print(f"Frame processor {frame_processor} not found")
sys.exit()
return frame_processor_module
def get_frame_processors_modules(frame_processors: List[str]) -> List[ModuleType]:
global FRAME_PROCESSORS_MODULES
if not FRAME_PROCESSORS_MODULES:
for frame_processor in frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
FRAME_PROCESSORS_MODULES.append(frame_processor_module)
set_frame_processors_modules_from_ui(frame_processors)
return FRAME_PROCESSORS_MODULES
def set_frame_processors_modules_from_ui(frame_processors: List[str]) -> None:
global FRAME_PROCESSORS_MODULES
for frame_processor, state in modules.globals.fp_ui.items():
if state == True and frame_processor not in frame_processors:
frame_processor_module = load_frame_processor_module(frame_processor)
FRAME_PROCESSORS_MODULES.append(frame_processor_module)
modules.globals.frame_processors.append(frame_processor)
if state == False:
try:
frame_processor_module = load_frame_processor_module(frame_processor)
FRAME_PROCESSORS_MODULES.remove(frame_processor_module)
modules.globals.frame_processors.remove(frame_processor)
except:
pass
def multi_process_frame(source_path: str, temp_frame_paths: List[str], process_frames: Callable[[str, List[str], Any], None], progress: Any = None) -> None:
with ThreadPoolExecutor(max_workers=modules.globals.execution_threads) as executor:
futures = []
for path in temp_frame_paths:
future = executor.submit(process_frames, source_path, [path], progress)
futures.append(future)
for future in futures:
future.result()
def process_video(source_path: str, frame_paths: list[str], process_frames: Callable[[str, List[str], Any], None]) -> None:
progress_bar_format = '{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, {rate_fmt}{postfix}]'
total = len(frame_paths)
with tqdm(total=total, desc='Processing', unit='frame', dynamic_ncols=True, bar_format=progress_bar_format) as progress:
progress.set_postfix({'execution_providers': modules.globals.execution_providers, 'execution_threads': modules.globals.execution_threads, 'max_memory': modules.globals.max_memory})
multi_process_frame(source_path, frame_paths, process_frames, progress)

View File

@ -0,0 +1,79 @@
from typing import Any, List
import cv2
import threading
import gfpgan
import os
import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face
from modules.typing import Frame, Face
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
FACE_ENHANCER = None
THREAD_SEMAPHORE = threading.Semaphore()
THREAD_LOCK = threading.Lock()
NAME = 'DLC.FACE-ENHANCER'
def pre_check() -> bool:
download_directory_path = resolve_relative_path('..\models')
conditional_download(download_directory_path, ['https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/GFPGANv1.4.pth'])
return True
def pre_start() -> bool:
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
update_status('Select an image or video for target path.', NAME)
return False
return True
def get_face_enhancer() -> Any:
global FACE_ENHANCER
with THREAD_LOCK:
if FACE_ENHANCER is None:
if os.name == 'nt':
model_path = resolve_relative_path('..\models\GFPGANv1.4.pth')
# todo: set models path https://github.com/TencentARC/GFPGAN/issues/399
else:
model_path = resolve_relative_path('../models/GFPGANv1.4.pth')
FACE_ENHANCER = gfpgan.GFPGANer(model_path=model_path, upscale=1) # type: ignore[attr-defined]
return FACE_ENHANCER
def enhance_face(temp_frame: Frame) -> Frame:
with THREAD_SEMAPHORE:
_, _, temp_frame = get_face_enhancer().enhance(
temp_frame,
paste_back=True
)
return temp_frame
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = enhance_face(temp_frame)
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
result = process_frame(None, temp_frame)
cv2.imwrite(temp_frame_path, result)
if progress:
progress.update(1)
def process_image(source_path: str, target_path: str, output_path: str) -> None:
target_frame = cv2.imread(target_path)
result = process_frame(None, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
modules.processors.frame.core.process_video(None, temp_frame_paths, process_frames)

View File

@ -0,0 +1,86 @@
from typing import Any, List
import cv2
import insightface
import threading
import modules.globals
import modules.processors.frame.core
from modules.core import update_status
from modules.face_analyser import get_one_face, get_many_faces
from modules.typing import Face, Frame
from modules.utilities import conditional_download, resolve_relative_path, is_image, is_video
FACE_SWAPPER = None
THREAD_LOCK = threading.Lock()
NAME = 'DLC.FACE-SWAPPER'
def pre_check() -> bool:
download_directory_path = resolve_relative_path('../models')
conditional_download(download_directory_path, ['https://huggingface.co/hacksider/deep-live-cam/blob/main/inswapper_128_fp16.onnx'])
return True
def pre_start() -> bool:
if not is_image(modules.globals.source_path):
update_status('Select an image for source path.', NAME)
return False
elif not get_one_face(cv2.imread(modules.globals.source_path)):
update_status('No face in source path detected.', NAME)
return False
if not is_image(modules.globals.target_path) and not is_video(modules.globals.target_path):
update_status('Select an image or video for target path.', NAME)
return False
return True
def get_face_swapper() -> Any:
global FACE_SWAPPER
with THREAD_LOCK:
if FACE_SWAPPER is None:
model_path = resolve_relative_path('../models/inswapper_128_fp16.onnx')
FACE_SWAPPER = insightface.model_zoo.get_model(model_path, providers=modules.globals.execution_providers)
return FACE_SWAPPER
def swap_face(source_face: Face, target_face: Face, temp_frame: Frame) -> Frame:
return get_face_swapper().get(temp_frame, target_face, source_face, paste_back=True)
def process_frame(source_face: Face, temp_frame: Frame) -> Frame:
if modules.globals.many_faces:
many_faces = get_many_faces(temp_frame)
if many_faces:
for target_face in many_faces:
temp_frame = swap_face(source_face, target_face, temp_frame)
else:
target_face = get_one_face(temp_frame)
if target_face:
temp_frame = swap_face(source_face, target_face, temp_frame)
return temp_frame
def process_frames(source_path: str, temp_frame_paths: List[str], progress: Any = None) -> None:
source_face = get_one_face(cv2.imread(source_path))
for temp_frame_path in temp_frame_paths:
temp_frame = cv2.imread(temp_frame_path)
try:
result = process_frame(source_face, temp_frame)
cv2.imwrite(temp_frame_path, result)
except Exception as exception:
print(exception)
pass
if progress:
progress.update(1)
def process_image(source_path: str, target_path: str, output_path: str) -> None:
source_face = get_one_face(cv2.imread(source_path))
target_frame = cv2.imread(target_path)
result = process_frame(source_face, target_frame)
cv2.imwrite(output_path, result)
def process_video(source_path: str, temp_frame_paths: List[str]) -> None:
modules.processors.frame.core.process_video(source_path, temp_frame_paths, process_frames)

7
modules/typing.py Normal file
View File

@ -0,0 +1,7 @@
from typing import Any
from insightface.app.common import Face
import numpy
Face = Face
Frame = numpy.ndarray[Any, Any]

158
modules/ui.json Normal file
View File

@ -0,0 +1,158 @@
{
"CTk": {
"fg_color": ["gray95", "gray10"]
},
"CTkToplevel": {
"fg_color": ["gray95", "gray10"]
},
"CTkFrame": {
"corner_radius": 0,
"border_width": 0,
"fg_color": ["gray90", "gray13"],
"top_fg_color": ["gray85", "gray16"],
"border_color": ["gray65", "gray28"]
},
"CTkButton": {
"corner_radius": 0,
"border_width": 0,
"fg_color": ["#2aa666", "#1f538d"],
"hover_color": ["#3cb666", "#14375e"],
"border_color": ["#3e4a40", "#949A9F"],
"text_color": ["#f3faf6", "#f3faf6"],
"text_color_disabled": ["gray74", "gray60"]
},
"CTkLabel": {
"corner_radius": 0,
"fg_color": "transparent",
"text_color": ["gray14", "gray84"]
},
"CTkEntry": {
"corner_radius": 0,
"border_width": 2,
"fg_color": ["#F9F9FA", "#343638"],
"border_color": ["#979DA2", "#565B5E"],
"text_color": ["gray14", "gray84"],
"placeholder_text_color": ["gray52", "gray62"]
},
"CTkCheckbox": {
"corner_radius": 0,
"border_width": 3,
"fg_color": ["#2aa666", "#1f538d"],
"border_color": ["#3e4a40", "#949A9F"],
"hover_color": ["#3cb666", "#14375e"],
"checkmark_color": ["#f3faf6", "gray90"],
"text_color": ["gray14", "gray84"],
"text_color_disabled": ["gray60", "gray45"]
},
"CTkSwitch": {
"corner_radius": 1000,
"border_width": 3,
"button_length": 0,
"fg_color": ["#939BA2", "#4A4D50"],
"progress_color": ["#2aa666", "#1f538d"],
"button_color": ["gray36", "#D5D9DE"],
"button_hover_color": ["gray20", "gray100"],
"text_color": ["gray14", "gray84"],
"text_color_disabled": ["gray60", "gray45"]
},
"CTkRadiobutton": {
"corner_radius": 1000,
"border_width_checked": 6,
"border_width_unchecked": 3,
"fg_color": ["#2aa666", "#1f538d"],
"border_color": ["#3e4a40", "#949A9F"],
"hover_color": ["#3cb666", "#14375e"],
"text_color": ["gray14", "gray84"],
"text_color_disabled": ["gray60", "gray45"]
},
"CTkProgressBar": {
"corner_radius": 1000,
"border_width": 0,
"fg_color": ["#939BA2", "#4A4D50"],
"progress_color": ["#2aa666", "#1f538d"],
"border_color": ["gray", "gray"]
},
"CTkSlider": {
"corner_radius": 1000,
"button_corner_radius": 1000,
"border_width": 6,
"button_length": 0,
"fg_color": ["#939BA2", "#4A4D50"],
"progress_color": ["gray40", "#AAB0B5"],
"button_color": ["#2aa666", "#1f538d"],
"button_hover_color": ["#3cb666", "#14375e"]
},
"CTkOptionMenu": {
"corner_radius": 0,
"fg_color": ["#2aa666", "#1f538d"],
"button_color": ["#3cb666", "#14375e"],
"button_hover_color": ["#234567", "#1e2c40"],
"text_color": ["#f3faf6", "#f3faf6"],
"text_color_disabled": ["gray74", "gray60"]
},
"CTkComboBox": {
"corner_radius": 0,
"border_width": 2,
"fg_color": ["#F9F9FA", "#343638"],
"border_color": ["#979DA2", "#565B5E"],
"button_color": ["#979DA2", "#565B5E"],
"button_hover_color": ["#6E7174", "#7A848D"],
"text_color": ["gray14", "gray84"],
"text_color_disabled": ["gray50", "gray45"]
},
"CTkScrollbar": {
"corner_radius": 1000,
"border_spacing": 4,
"fg_color": "transparent",
"button_color": ["gray55", "gray41"],
"button_hover_color": ["gray40", "gray53"]
},
"CTkSegmentedButton": {
"corner_radius": 0,
"border_width": 2,
"fg_color": ["#979DA2", "gray29"],
"selected_color": ["#2aa666", "#1f538d"],
"selected_hover_color": ["#3cb666", "#14375e"],
"unselected_color": ["#979DA2", "gray29"],
"unselected_hover_color": ["gray70", "gray41"],
"text_color": ["#f3faf6", "#f3faf6"],
"text_color_disabled": ["gray74", "gray60"]
},
"CTkTextbox": {
"corner_radius": 0,
"border_width": 0,
"fg_color": ["gray100", "gray20"],
"border_color": ["#979DA2", "#565B5E"],
"text_color": ["gray14", "gray84"],
"scrollbar_button_color": ["gray55", "gray41"],
"scrollbar_button_hover_color": ["gray40", "gray53"]
},
"CTkScrollableFrame": {
"label_fg_color": ["gray80", "gray21"]
},
"DropdownMenu": {
"fg_color": ["gray90", "gray20"],
"hover_color": ["gray75", "gray28"],
"text_color": ["gray14", "gray84"]
},
"CTkFont": {
"macOS": {
"family": "Avenir",
"size": 18,
"weight": "normal"
},
"Windows": {
"family": "Corbel",
"size": 18,
"weight": "normal"
},
"Linux": {
"family": "Montserrat",
"size": 18,
"weight": "normal"
}
},
"URL": {
"text_color": ["gray74", "gray60"]
}
}

296
modules/ui.py Normal file
View File

@ -0,0 +1,296 @@
import os
import webbrowser
import customtkinter as ctk
from typing import Callable, Tuple
import cv2
from PIL import Image, ImageOps
import modules.globals
import modules.metadata
from modules.face_analyser import get_one_face
from modules.capturer import get_video_frame, get_video_frame_total
from modules.processors.frame.core import get_frame_processors_modules
from modules.utilities import is_image, is_video, resolve_relative_path
ROOT = None
ROOT_HEIGHT = 700
ROOT_WIDTH = 600
PREVIEW = None
PREVIEW_MAX_HEIGHT = 700
PREVIEW_MAX_WIDTH = 1200
RECENT_DIRECTORY_SOURCE = None
RECENT_DIRECTORY_TARGET = None
RECENT_DIRECTORY_OUTPUT = None
preview_label = None
preview_slider = None
source_label = None
target_label = None
status_label = None
img_ft, vid_ft = modules.globals.file_types
def init(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.CTk:
global ROOT, PREVIEW
ROOT = create_root(start, destroy)
PREVIEW = create_preview(ROOT)
return ROOT
def create_root(start: Callable[[], None], destroy: Callable[[], None]) -> ctk.CTk:
global source_label, target_label, status_label
ctk.deactivate_automatic_dpi_awareness()
ctk.set_appearance_mode('system')
ctk.set_default_color_theme(resolve_relative_path('ui.json'))
root = ctk.CTk()
root.minsize(ROOT_WIDTH, ROOT_HEIGHT)
root.title(f'{modules.metadata.name} {modules.metadata.version} {modules.metadata.edition}')
root.configure()
root.protocol('WM_DELETE_WINDOW', lambda: destroy())
source_label = ctk.CTkLabel(root, text=None)
source_label.place(relx=0.1, rely=0.1, relwidth=0.3, relheight=0.25)
target_label = ctk.CTkLabel(root, text=None)
target_label.place(relx=0.6, rely=0.1, relwidth=0.3, relheight=0.25)
source_button = ctk.CTkButton(root, text='Select a face', cursor='hand2', command=lambda: select_source_path())
source_button.place(relx=0.1, rely=0.4, relwidth=0.3, relheight=0.1)
target_button = ctk.CTkButton(root, text='Select a target', cursor='hand2', command=lambda: select_target_path())
target_button.place(relx=0.6, rely=0.4, relwidth=0.3, relheight=0.1)
keep_fps_value = ctk.BooleanVar(value=modules.globals.keep_fps)
keep_fps_checkbox = ctk.CTkSwitch(root, text='Keep fps', variable=keep_fps_value, cursor='hand2', command=lambda: setattr(modules.globals, 'keep_fps', not modules.globals.keep_fps))
keep_fps_checkbox.place(relx=0.1, rely=0.6)
keep_frames_value = ctk.BooleanVar(value=modules.globals.keep_frames)
keep_frames_switch = ctk.CTkSwitch(root, text='Keep frames', variable=keep_frames_value, cursor='hand2', command=lambda: setattr(modules.globals, 'keep_frames', keep_frames_value.get()))
keep_frames_switch.place(relx=0.1, rely=0.65)
# for FRAME PROCESSOR ENHANCER tumbler:
enhancer_value = ctk.BooleanVar(value=modules.globals.fp_ui['face_enhancer'])
enhancer_switch = ctk.CTkSwitch(root, text='Face Enhancer', variable=enhancer_value, cursor='hand2', command=lambda: update_tumbler('face_enhancer',enhancer_value.get()))
enhancer_switch.place(relx=0.1, rely=0.7)
keep_audio_value = ctk.BooleanVar(value=modules.globals.keep_audio)
keep_audio_switch = ctk.CTkSwitch(root, text='Keep audio', variable=keep_audio_value, cursor='hand2', command=lambda: setattr(modules.globals, 'keep_audio', keep_audio_value.get()))
keep_audio_switch.place(relx=0.6, rely=0.6)
many_faces_value = ctk.BooleanVar(value=modules.globals.many_faces)
many_faces_switch = ctk.CTkSwitch(root, text='Many faces', variable=many_faces_value, cursor='hand2', command=lambda: setattr(modules.globals, 'many_faces', many_faces_value.get()))
many_faces_switch.place(relx=0.6, rely=0.65)
nsfw_value = ctk.BooleanVar(value=modules.globals.nsfw)
nsfw_switch = ctk.CTkSwitch(root, text='NSFW', variable=nsfw_value, cursor='hand2', command=lambda: setattr(modules.globals, 'nsfw', nsfw_value.get()))
nsfw_switch.place(relx=0.6, rely=0.7)
start_button = ctk.CTkButton(root, text='Start', cursor='hand2', command=lambda: select_output_path(start))
start_button.place(relx=0.15, rely=0.80, relwidth=0.2, relheight=0.05)
stop_button = ctk.CTkButton(root, text='Destroy', cursor='hand2', command=lambda: destroy())
stop_button.place(relx=0.4, rely=0.80, relwidth=0.2, relheight=0.05)
preview_button = ctk.CTkButton(root, text='Preview', cursor='hand2', command=lambda: toggle_preview())
preview_button.place(relx=0.65, rely=0.80, relwidth=0.2, relheight=0.05)
live_button = ctk.CTkButton(root, text='Live', cursor='hand2', command=lambda: webcam_preview())
live_button.place(relx=0.40, rely=0.86, relwidth=0.2, relheight=0.05)
status_label = ctk.CTkLabel(root, text=None, justify='center')
status_label.place(relx=0.1, rely=0.9, relwidth=0.8)
donate_label = ctk.CTkLabel(root, text='Deep Live Cam', justify='center', cursor='hand2')
donate_label.place(relx=0.1, rely=0.95, relwidth=0.8)
donate_label.configure(text_color=ctk.ThemeManager.theme.get('URL').get('text_color'))
donate_label.bind('<Button>', lambda event: webbrowser.open('https://paypal.me/hacksider'))
return root
def create_preview(parent: ctk.CTkToplevel) -> ctk.CTkToplevel:
global preview_label, preview_slider
preview = ctk.CTkToplevel(parent)
preview.withdraw()
preview.title('Preview')
preview.configure()
preview.protocol('WM_DELETE_WINDOW', lambda: toggle_preview())
preview.resizable(width=False, height=False)
preview_label = ctk.CTkLabel(preview, text=None)
preview_label.pack(fill='both', expand=True)
preview_slider = ctk.CTkSlider(preview, from_=0, to=0, command=lambda frame_value: update_preview(frame_value))
return preview
def update_status(text: str) -> None:
status_label.configure(text=text)
ROOT.update()
def update_tumbler(var: str, value: bool) -> None:
modules.globals.fp_ui[var] = value
def select_source_path() -> None:
global RECENT_DIRECTORY_SOURCE, img_ft, vid_ft
PREVIEW.withdraw()
source_path = ctk.filedialog.askopenfilename(title='select an source image', initialdir=RECENT_DIRECTORY_SOURCE, filetypes=[img_ft])
if is_image(source_path):
modules.globals.source_path = source_path
RECENT_DIRECTORY_SOURCE = os.path.dirname(modules.globals.source_path)
image = render_image_preview(modules.globals.source_path, (200, 200))
source_label.configure(image=image)
else:
modules.globals.source_path = None
source_label.configure(image=None)
def select_target_path() -> None:
global RECENT_DIRECTORY_TARGET, img_ft, vid_ft
PREVIEW.withdraw()
target_path = ctk.filedialog.askopenfilename(title='select an target image or video', initialdir=RECENT_DIRECTORY_TARGET, filetypes=[img_ft, vid_ft])
if is_image(target_path):
modules.globals.target_path = target_path
RECENT_DIRECTORY_TARGET = os.path.dirname(modules.globals.target_path)
image = render_image_preview(modules.globals.target_path, (200, 200))
target_label.configure(image=image)
elif is_video(target_path):
modules.globals.target_path = target_path
RECENT_DIRECTORY_TARGET = os.path.dirname(modules.globals.target_path)
video_frame = render_video_preview(target_path, (200, 200))
target_label.configure(image=video_frame)
else:
modules.globals.target_path = None
target_label.configure(image=None)
def select_output_path(start: Callable[[], None]) -> None:
global RECENT_DIRECTORY_OUTPUT, img_ft, vid_ft
if is_image(modules.globals.target_path):
output_path = ctk.filedialog.asksaveasfilename(title='save image output file', filetypes=[img_ft], defaultextension='.png', initialfile='output.png', initialdir=RECENT_DIRECTORY_OUTPUT)
elif is_video(modules.globals.target_path):
output_path = ctk.filedialog.asksaveasfilename(title='save video output file', filetypes=[vid_ft], defaultextension='.mp4', initialfile='output.mp4', initialdir=RECENT_DIRECTORY_OUTPUT)
else:
output_path = None
if output_path:
modules.globals.output_path = output_path
RECENT_DIRECTORY_OUTPUT = os.path.dirname(modules.globals.output_path)
start()
def render_image_preview(image_path: str, size: Tuple[int, int]) -> ctk.CTkImage:
image = Image.open(image_path)
if size:
image = ImageOps.fit(image, size, Image.LANCZOS)
return ctk.CTkImage(image, size=image.size)
def render_video_preview(video_path: str, size: Tuple[int, int], frame_number: int = 0) -> ctk.CTkImage:
capture = cv2.VideoCapture(video_path)
if frame_number:
capture.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
has_frame, frame = capture.read()
if has_frame:
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
if size:
image = ImageOps.fit(image, size, Image.LANCZOS)
return ctk.CTkImage(image, size=image.size)
capture.release()
cv2.destroyAllWindows()
def toggle_preview() -> None:
if PREVIEW.state() == 'normal':
PREVIEW.withdraw()
elif modules.globals.source_path and modules.globals.target_path:
init_preview()
update_preview()
PREVIEW.deiconify()
def init_preview() -> None:
if is_image(modules.globals.target_path):
preview_slider.pack_forget()
if is_video(modules.globals.target_path):
video_frame_total = get_video_frame_total(modules.globals.target_path)
preview_slider.configure(to=video_frame_total)
preview_slider.pack(fill='x')
preview_slider.set(0)
def update_preview(frame_number: int = 0) -> None:
if modules.globals.source_path and modules.globals.target_path:
temp_frame = get_video_frame(modules.globals.target_path, frame_number)
if modules.globals.nsfw == False:
from modules.predicter import predict_frame
if predict_frame(temp_frame):
quit()
for frame_processor in get_frame_processors_modules(modules.globals.frame_processors):
temp_frame = frame_processor.process_frame(
get_one_face(cv2.imread(modules.globals.source_path)),
temp_frame
)
image = Image.fromarray(cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB))
image = ImageOps.contain(image, (PREVIEW_MAX_WIDTH, PREVIEW_MAX_HEIGHT), Image.LANCZOS)
image = ctk.CTkImage(image, size=image.size)
preview_label.configure(image=image)
def webcam_preview():
if modules.globals.source_path is None:
# No image selected
return
global preview_label, PREVIEW
cap = cv2.VideoCapture(0) # Use index for the webcam (adjust the index accordingly if necessary)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 960) # Set the width of the resolution
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 540) # Set the height of the resolution
cap.set(cv2.CAP_PROP_FPS, 60) # Set the frame rate of the webcam
PREVIEW_MAX_WIDTH = 960
PREVIEW_MAX_HEIGHT = 540
preview_label.configure(image=None) # Reset the preview image before startup
PREVIEW.deiconify() # Open preview window
frame_processors = get_frame_processors_modules(modules.globals.frame_processors)
source_image = None # Initialize variable for the selected face image
while True:
ret, frame = cap.read()
if not ret:
break
# Select and save face image only once
if source_image is None and modules.globals.source_path:
source_image = get_one_face(cv2.imread(modules.globals.source_path))
temp_frame = frame.copy() #Create a copy of the frame
for frame_processor in frame_processors:
temp_frame = frame_processor.process_frame(source_image, temp_frame)
image = cv2.cvtColor(temp_frame, cv2.COLOR_BGR2RGB) # Convert the image to RGB format to display it with Tkinter
image = Image.fromarray(image)
image = ImageOps.contain(image, (PREVIEW_MAX_WIDTH, PREVIEW_MAX_HEIGHT), Image.LANCZOS)
image = ctk.CTkImage(image, size=image.size)
preview_label.configure(image=image)
ROOT.update()
cap.release()
PREVIEW.withdraw() # Close preview window when loop is finished

141
modules/utilities.py Normal file
View File

@ -0,0 +1,141 @@
import glob
import mimetypes
import os
import platform
import shutil
import ssl
import subprocess
import urllib
from pathlib import Path
from typing import List, Any
from tqdm import tqdm
import modules.globals
TEMP_FILE = 'temp.mp4'
TEMP_DIRECTORY = 'temp'
# monkey patch ssl for mac
if platform.system().lower() == 'darwin':
ssl._create_default_https_context = ssl._create_unverified_context
def run_ffmpeg(args: List[str]) -> bool:
commands = ['ffmpeg', '-hide_banner', '-hwaccel', 'auto', '-loglevel', modules.globals.log_level]
commands.extend(args)
try:
subprocess.check_output(commands, stderr=subprocess.STDOUT)
return True
except Exception:
pass
return False
def detect_fps(target_path: str) -> float:
command = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries', 'stream=r_frame_rate', '-of', 'default=noprint_wrappers=1:nokey=1', target_path]
output = subprocess.check_output(command).decode().strip().split('/')
try:
numerator, denominator = map(int, output)
return numerator / denominator
except Exception:
pass
return 30.0
def extract_frames(target_path: str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
run_ffmpeg(['-i', target_path, '-pix_fmt', 'rgb24', os.path.join(temp_directory_path, '%04d.png')])
def create_video(target_path: str, fps: float = 30.0) -> None:
temp_output_path = get_temp_output_path(target_path)
temp_directory_path = get_temp_directory_path(target_path)
run_ffmpeg(['-r', str(fps), '-i', os.path.join(temp_directory_path, '%04d.png'), '-c:v', modules.globals.video_encoder, '-crf', str(modules.globals.video_quality), '-pix_fmt', 'yuv420p', '-vf', 'colorspace=bt709:iall=bt601-6-625:fast=1', '-y', temp_output_path])
def restore_audio(target_path: str, output_path: str) -> None:
temp_output_path = get_temp_output_path(target_path)
done = run_ffmpeg(['-i', temp_output_path, '-i', target_path, '-c:v', 'copy', '-map', '0:v:0', '-map', '1:a:0', '-y', output_path])
if not done:
move_temp(target_path, output_path)
def get_temp_frame_paths(target_path: str) -> List[str]:
temp_directory_path = get_temp_directory_path(target_path)
return glob.glob((os.path.join(glob.escape(temp_directory_path), '*.png')))
def get_temp_directory_path(target_path: str) -> str:
target_name, _ = os.path.splitext(os.path.basename(target_path))
target_directory_path = os.path.dirname(target_path)
return os.path.join(target_directory_path, TEMP_DIRECTORY, target_name)
def get_temp_output_path(target_path: str) -> str:
temp_directory_path = get_temp_directory_path(target_path)
return os.path.join(temp_directory_path, TEMP_FILE)
def normalize_output_path(source_path: str, target_path: str, output_path: str) -> Any:
if source_path and target_path:
source_name, _ = os.path.splitext(os.path.basename(source_path))
target_name, target_extension = os.path.splitext(os.path.basename(target_path))
if os.path.isdir(output_path):
return os.path.join(output_path, source_name + '-' + target_name + target_extension)
return output_path
def create_temp(target_path: str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
Path(temp_directory_path).mkdir(parents=True, exist_ok=True)
def move_temp(target_path: str, output_path: str) -> None:
temp_output_path = get_temp_output_path(target_path)
if os.path.isfile(temp_output_path):
if os.path.isfile(output_path):
os.remove(output_path)
shutil.move(temp_output_path, output_path)
def clean_temp(target_path: str) -> None:
temp_directory_path = get_temp_directory_path(target_path)
parent_directory_path = os.path.dirname(temp_directory_path)
if not modules.globals.keep_frames and os.path.isdir(temp_directory_path):
shutil.rmtree(temp_directory_path)
if os.path.exists(parent_directory_path) and not os.listdir(parent_directory_path):
os.rmdir(parent_directory_path)
def has_image_extension(image_path: str) -> bool:
return image_path.lower().endswith(('png', 'jpg', 'jpeg'))
def is_image(image_path: str) -> bool:
if image_path and os.path.isfile(image_path):
mimetype, _ = mimetypes.guess_type(image_path)
return bool(mimetype and mimetype.startswith('image/'))
return False
def is_video(video_path: str) -> bool:
if video_path and os.path.isfile(video_path):
mimetype, _ = mimetypes.guess_type(video_path)
return bool(mimetype and mimetype.startswith('video/'))
return False
def conditional_download(download_directory_path: str, urls: List[str]) -> None:
if not os.path.exists(download_directory_path):
os.makedirs(download_directory_path)
for url in urls:
download_file_path = os.path.join(download_directory_path, os.path.basename(url))
if not os.path.exists(download_file_path):
request = urllib.request.urlopen(url) # type: ignore[attr-defined]
total = int(request.headers.get('Content-Length', 0))
with tqdm(total=total, desc='Downloading', unit='B', unit_scale=True, unit_divisor=1024) as progress:
urllib.request.urlretrieve(url, download_file_path, reporthook=lambda count, block_size, total_size: progress.update(block_size)) # type: ignore[attr-defined]
def resolve_relative_path(path: str) -> str:
return os.path.abspath(os.path.join(os.path.dirname(__file__), path))