mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2024-12-27 00:55:17 +00:00
87 lines
2.0 KiB
Go
87 lines
2.0 KiB
Go
|
//
|
||
|
// Copyright (c) 2019 harmony-one
|
||
|
//
|
||
|
// SPDX-License-Identifier: MIT
|
||
|
//
|
||
|
|
||
|
package iqc
|
||
|
|
||
|
import (
|
||
|
"bytes"
|
||
|
"crypto/sha256"
|
||
|
"encoding/binary"
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
type Pair struct {
|
||
|
p int64
|
||
|
q int64
|
||
|
}
|
||
|
|
||
|
var m = 8 * 3 * 5 * 7 * 11 * 13
|
||
|
|
||
|
func EntropyFromSeed(seed []byte, byte_count uint32) []byte {
|
||
|
buffer := bytes.Buffer{}
|
||
|
bufferSize := uint32(0)
|
||
|
|
||
|
extra := uint16(0)
|
||
|
bytes := make([]byte, len(seed)+2)
|
||
|
copy(bytes, seed)
|
||
|
for bufferSize <= byte_count {
|
||
|
binary.BigEndian.PutUint16(bytes[len(seed):], extra)
|
||
|
more_entropy := sha256.Sum256(bytes)
|
||
|
buffer.Write(more_entropy[:])
|
||
|
bufferSize += sha256.Size
|
||
|
extra += 1
|
||
|
}
|
||
|
|
||
|
return buffer.Bytes()[:byte_count]
|
||
|
}
|
||
|
|
||
|
//Return a discriminant of the given length using the given seed
|
||
|
//It is a random prime p between 13 - 2^2K
|
||
|
//return -p, where p % 8 == 7
|
||
|
func CreateDiscriminant(seed []byte, length uint32) *big.Int {
|
||
|
extra := uint8(length) & 7
|
||
|
byte_count := ((length + 7) >> 3) + 2
|
||
|
entropy := EntropyFromSeed(seed, byte_count)
|
||
|
|
||
|
n := new(big.Int)
|
||
|
n.SetBytes(entropy[:len(entropy)-2])
|
||
|
n = new(big.Int).Rsh(n, uint(((8 - extra) & 7)))
|
||
|
n = new(big.Int).SetBit(n, int(length-1), 1)
|
||
|
n = new(big.Int).Sub(n, new(big.Int).Mod(n, big.NewInt(int64(m))))
|
||
|
n = new(big.Int).Add(n, big.NewInt(int64(residues[int(binary.BigEndian.Uint16(entropy[len(entropy)-2:]))%len(residues)])))
|
||
|
|
||
|
negN := new(big.Int).Neg(n)
|
||
|
|
||
|
// Find the smallest prime >= n of the form n + m*x
|
||
|
for {
|
||
|
sieve := make([]bool, (1 << 16))
|
||
|
|
||
|
for _, v := range sieve_info {
|
||
|
// q = m^-1 (mod p)
|
||
|
// i = -n / m, so that m*i is -n (mod p)
|
||
|
//i := ((-n % v.p) * v.q) % v.p
|
||
|
i := (new(big.Int).Mod(negN, big.NewInt(v.p)).Int64() * v.q) % v.p
|
||
|
|
||
|
for i < int64(len(sieve)) {
|
||
|
sieve[i] = true
|
||
|
i += v.p
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for i, v := range sieve {
|
||
|
t := new(big.Int).Add(n, big.NewInt(int64(m)*int64(i)))
|
||
|
if !v && t.ProbablyPrime(1) {
|
||
|
return new(big.Int).Neg(t)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//n += m * (1 << 16)
|
||
|
bigM := big.NewInt(int64(m))
|
||
|
n = new(big.Int).Add(n, bigM.Mul(bigM, big.NewInt(int64(1<<16))))
|
||
|
|
||
|
}
|
||
|
}
|