mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-24 06:36:13 +00:00
179 lines
4.5 KiB
Go
179 lines
4.5 KiB
Go
|
//
|
||
|
// Copyright Coinbase, Inc. All Rights Reserved.
|
||
|
//
|
||
|
// SPDX-License-Identifier: Apache-2.0
|
||
|
//
|
||
|
// Package core contains convenience functions for modular arithmetic.
|
||
|
|
||
|
// Package core contains a set of primitives, including but not limited to various
|
||
|
// elliptic curves, hashes, and commitment schemes. These primitives are used internally
|
||
|
// and can also be used independently on their own externally.
|
||
|
package core
|
||
|
|
||
|
import (
|
||
|
crand "crypto/rand"
|
||
|
"crypto/subtle"
|
||
|
"fmt"
|
||
|
"math/big"
|
||
|
|
||
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/internal"
|
||
|
)
|
||
|
|
||
|
var (
|
||
|
// Zero is additive identity in the set of integers
|
||
|
Zero = big.NewInt(0)
|
||
|
|
||
|
// One is the multiplicative identity in the set of integers
|
||
|
One = big.NewInt(1)
|
||
|
|
||
|
// Two is the odd prime
|
||
|
Two = big.NewInt(2)
|
||
|
)
|
||
|
|
||
|
// ConstantTimeEqByte determines if a, b have identical byte serialization
|
||
|
// and signs. It uses the crypto/subtle package to get a constant time comparison
|
||
|
// over byte representations. Return value is a byte which may be
|
||
|
// useful in bitwise operations. Returns 0x1 if the two values have the
|
||
|
// identical sign and byte representation; 0x0 otherwise.
|
||
|
func ConstantTimeEqByte(a, b *big.Int) byte {
|
||
|
if a == nil && a == b {
|
||
|
return 1
|
||
|
}
|
||
|
if a == nil || b == nil {
|
||
|
return 0
|
||
|
}
|
||
|
// Determine if the byte representations are the same
|
||
|
var sameBytes byte
|
||
|
if subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 {
|
||
|
sameBytes = 1
|
||
|
} else {
|
||
|
sameBytes = 0
|
||
|
}
|
||
|
|
||
|
// Determine if the signs are the same
|
||
|
var sameSign byte
|
||
|
if a.Sign() == b.Sign() {
|
||
|
sameSign = 1
|
||
|
} else {
|
||
|
sameSign = 0
|
||
|
}
|
||
|
|
||
|
// Report the conjunction
|
||
|
return sameBytes & sameSign
|
||
|
}
|
||
|
|
||
|
// ConstantTimeEq determines if a, b have identical byte serialization
|
||
|
// and uses the crypto/subtle package to get a constant time comparison
|
||
|
// over byte representations.
|
||
|
func ConstantTimeEq(a, b *big.Int) bool {
|
||
|
return ConstantTimeEqByte(a, b) == 1
|
||
|
}
|
||
|
|
||
|
// In determines ring membership before modular reduction: x ∈ Z_m
|
||
|
// returns nil if 0 ≤ x < m
|
||
|
func In(x, m *big.Int) error {
|
||
|
if AnyNil(x, m) {
|
||
|
return internal.ErrNilArguments
|
||
|
}
|
||
|
// subtle doesn't support constant time big.Int compare
|
||
|
// just use big.Cmp for now
|
||
|
// x ∈ Z_m ⇔ 0 ≤ x < m
|
||
|
if x.Cmp(Zero) != -1 && x.Cmp(m) == -1 {
|
||
|
return nil
|
||
|
}
|
||
|
return internal.ErrZmMembership
|
||
|
}
|
||
|
|
||
|
// Add (modular addition): z = x+y (modulo m)
|
||
|
func Add(x, y, m *big.Int) (*big.Int, error) {
|
||
|
if AnyNil(x, y) {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
z := new(big.Int).Add(x, y)
|
||
|
// Compute the residue if one is specified, otherwise
|
||
|
// we leave the value as an unbound integer
|
||
|
if m != nil {
|
||
|
z.Mod(z, m)
|
||
|
}
|
||
|
return z, nil
|
||
|
}
|
||
|
|
||
|
// Mul (modular multiplication): z = x*y (modulo m)
|
||
|
func Mul(x, y, m *big.Int) (*big.Int, error) {
|
||
|
if AnyNil(x, y) {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
z := new(big.Int).Mul(x, y)
|
||
|
|
||
|
// Compute the residue if one is specified, otherwise
|
||
|
// we leave the value as an unbound integer
|
||
|
if m != nil {
|
||
|
z.Mod(z, m)
|
||
|
}
|
||
|
return z, nil
|
||
|
}
|
||
|
|
||
|
// Exp (modular exponentiation): z = x^y (modulo m)
|
||
|
func Exp(x, y, m *big.Int) (*big.Int, error) {
|
||
|
if AnyNil(x, y) {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
// This wrapper looks silly, but it makes the calling code read more consistently.
|
||
|
return new(big.Int).Exp(x, y, m), nil
|
||
|
}
|
||
|
|
||
|
// Neg (modular negation): z = -x (modulo m)
|
||
|
func Neg(x, m *big.Int) (*big.Int, error) {
|
||
|
if AnyNil(x, m) {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
z := new(big.Int).Neg(x)
|
||
|
z.Mod(z, m)
|
||
|
return z, nil
|
||
|
}
|
||
|
|
||
|
// Inv (modular inverse): returns y such that xy = 1 (modulo m).
|
||
|
func Inv(x, m *big.Int) (*big.Int, error) {
|
||
|
if AnyNil(x, m) {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
z := new(big.Int).ModInverse(x, m)
|
||
|
if z == nil {
|
||
|
return nil, fmt.Errorf("cannot compute the multiplicative inverse")
|
||
|
}
|
||
|
return z, nil
|
||
|
}
|
||
|
|
||
|
// Rand generates a cryptographically secure random integer in the range: 1 < r < m.
|
||
|
func Rand(m *big.Int) (*big.Int, error) {
|
||
|
if m == nil {
|
||
|
return nil, internal.ErrNilArguments
|
||
|
}
|
||
|
|
||
|
// Select a random element, but not zero or one
|
||
|
// The reason is the random element may be used as a Scalar or an exponent.
|
||
|
// An exponent of 1 is generally acceptable because the generator can't be
|
||
|
// 1. If a Scalar is combined with another Scalar like in fiat-shamir, it
|
||
|
// offers no hiding properties when multiplied.
|
||
|
for {
|
||
|
result, err := crand.Int(crand.Reader, m)
|
||
|
if err != nil {
|
||
|
return nil, err
|
||
|
}
|
||
|
|
||
|
if result.Cmp(One) == 1 { // result > 1
|
||
|
return result, nil
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// AnyNil determines if any of values are nil
|
||
|
func AnyNil(values ...*big.Int) bool {
|
||
|
for _, x := range values {
|
||
|
if x == nil {
|
||
|
return true
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|