mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-24 22:55:17 +00:00
485 lines
13 KiB
Go
485 lines
13 KiB
Go
|
// This file has been ported over from go 1.21.0 so that we can avoid
|
||
|
// having to upgrade for basic comparison functions. Copyright notice
|
||
|
// is preserved:
|
||
|
// Code generated by gen_sort_variants.go; DO NOT EDIT.
|
||
|
|
||
|
// Copyright 2022 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package slices
|
||
|
|
||
|
import "github.com/cockroachdb/pebble/shims/cmp"
|
||
|
|
||
|
// insertionSortOrdered sorts data[a:b] using insertion sort.
|
||
|
func insertionSortOrdered[E cmp.Ordered](data []E, a, b int) {
|
||
|
for i := a + 1; i < b; i++ {
|
||
|
for j := i; j > a && cmp.Less(data[j], data[j-1]); j-- {
|
||
|
data[j], data[j-1] = data[j-1], data[j]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// siftDownOrdered implements the heap property on data[lo:hi].
|
||
|
// first is an offset into the array where the root of the heap lies.
|
||
|
func siftDownOrdered[E cmp.Ordered](data []E, lo, hi, first int) {
|
||
|
root := lo
|
||
|
for {
|
||
|
child := 2*root + 1
|
||
|
if child >= hi {
|
||
|
break
|
||
|
}
|
||
|
if child+1 < hi && cmp.Less(data[first+child], data[first+child+1]) {
|
||
|
child++
|
||
|
}
|
||
|
if !cmp.Less(data[first+root], data[first+child]) {
|
||
|
return
|
||
|
}
|
||
|
data[first+root], data[first+child] = data[first+child], data[first+root]
|
||
|
root = child
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func heapSortOrdered[E cmp.Ordered](data []E, a, b int) {
|
||
|
first := a
|
||
|
lo := 0
|
||
|
hi := b - a
|
||
|
|
||
|
// Build heap with greatest element at top.
|
||
|
for i := (hi - 1) / 2; i >= 0; i-- {
|
||
|
siftDownOrdered(data, i, hi, first)
|
||
|
}
|
||
|
|
||
|
// Pop elements, largest first, into end of data.
|
||
|
for i := hi - 1; i >= 0; i-- {
|
||
|
data[first], data[first+i] = data[first+i], data[first]
|
||
|
siftDownOrdered(data, lo, i, first)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// pdqsortOrdered sorts data[a:b].
|
||
|
// The algorithm based on pattern-defeating quicksort(pdqsort), but without the optimizations from BlockQuicksort.
|
||
|
// pdqsort paper: https://arxiv.org/pdf/2106.05123.pdf
|
||
|
// C++ implementation: https://github.com/orlp/pdqsort
|
||
|
// Rust implementation: https://docs.rs/pdqsort/latest/pdqsort/
|
||
|
// limit is the number of allowed bad (very unbalanced) pivots before falling back to heapsort.
|
||
|
func pdqsortOrdered[E cmp.Ordered](data []E, a, b, limit int) {
|
||
|
const maxInsertion = 12
|
||
|
|
||
|
var (
|
||
|
wasBalanced = true // whether the last partitioning was reasonably balanced
|
||
|
wasPartitioned = true // whether the slice was already partitioned
|
||
|
)
|
||
|
|
||
|
for {
|
||
|
length := b - a
|
||
|
|
||
|
if length <= maxInsertion {
|
||
|
insertionSortOrdered(data, a, b)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Fall back to heapsort if too many bad choices were made.
|
||
|
if limit == 0 {
|
||
|
heapSortOrdered(data, a, b)
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// If the last partitioning was imbalanced, we need to breaking patterns.
|
||
|
if !wasBalanced {
|
||
|
breakPatternsOrdered(data, a, b)
|
||
|
limit--
|
||
|
}
|
||
|
|
||
|
pivot, hint := choosePivotOrdered(data, a, b)
|
||
|
if hint == decreasingHint {
|
||
|
reverseRangeOrdered(data, a, b)
|
||
|
// The chosen pivot was pivot-a elements after the start of the array.
|
||
|
// After reversing it is pivot-a elements before the end of the array.
|
||
|
// The idea came from Rust's implementation.
|
||
|
pivot = (b - 1) - (pivot - a)
|
||
|
hint = increasingHint
|
||
|
}
|
||
|
|
||
|
// The slice is likely already sorted.
|
||
|
if wasBalanced && wasPartitioned && hint == increasingHint {
|
||
|
if partialInsertionSortOrdered(data, a, b) {
|
||
|
return
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Probably the slice contains many duplicate elements, partition the slice into
|
||
|
// elements equal to and elements greater than the pivot.
|
||
|
if a > 0 && !cmp.Less(data[a-1], data[pivot]) {
|
||
|
mid := partitionEqualOrdered(data, a, b, pivot)
|
||
|
a = mid
|
||
|
continue
|
||
|
}
|
||
|
|
||
|
mid, alreadyPartitioned := partitionOrdered(data, a, b, pivot)
|
||
|
wasPartitioned = alreadyPartitioned
|
||
|
|
||
|
leftLen, rightLen := mid-a, b-mid
|
||
|
balanceThreshold := length / 8
|
||
|
if leftLen < rightLen {
|
||
|
wasBalanced = leftLen >= balanceThreshold
|
||
|
pdqsortOrdered(data, a, mid, limit)
|
||
|
a = mid + 1
|
||
|
} else {
|
||
|
wasBalanced = rightLen >= balanceThreshold
|
||
|
pdqsortOrdered(data, mid+1, b, limit)
|
||
|
b = mid
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// partitionOrdered does one quicksort partition.
|
||
|
// Let p = data[pivot]
|
||
|
// Moves elements in data[a:b] around, so that data[i]<p and data[j]>=p for i<newpivot and j>newpivot.
|
||
|
// On return, data[newpivot] = p
|
||
|
func partitionOrdered[E cmp.Ordered](data []E, a, b, pivot int) (newpivot int, alreadyPartitioned bool) {
|
||
|
data[a], data[pivot] = data[pivot], data[a]
|
||
|
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||
|
|
||
|
for i <= j && cmp.Less(data[i], data[a]) {
|
||
|
i++
|
||
|
}
|
||
|
for i <= j && !cmp.Less(data[j], data[a]) {
|
||
|
j--
|
||
|
}
|
||
|
if i > j {
|
||
|
data[j], data[a] = data[a], data[j]
|
||
|
return j, true
|
||
|
}
|
||
|
data[i], data[j] = data[j], data[i]
|
||
|
i++
|
||
|
j--
|
||
|
|
||
|
for {
|
||
|
for i <= j && cmp.Less(data[i], data[a]) {
|
||
|
i++
|
||
|
}
|
||
|
for i <= j && !cmp.Less(data[j], data[a]) {
|
||
|
j--
|
||
|
}
|
||
|
if i > j {
|
||
|
break
|
||
|
}
|
||
|
data[i], data[j] = data[j], data[i]
|
||
|
i++
|
||
|
j--
|
||
|
}
|
||
|
data[j], data[a] = data[a], data[j]
|
||
|
return j, false
|
||
|
}
|
||
|
|
||
|
// partitionEqualOrdered partitions data[a:b] into elements equal to data[pivot] followed by elements greater than data[pivot].
|
||
|
// It assumed that data[a:b] does not contain elements smaller than the data[pivot].
|
||
|
func partitionEqualOrdered[E cmp.Ordered](data []E, a, b, pivot int) (newpivot int) {
|
||
|
data[a], data[pivot] = data[pivot], data[a]
|
||
|
i, j := a+1, b-1 // i and j are inclusive of the elements remaining to be partitioned
|
||
|
|
||
|
for {
|
||
|
for i <= j && !cmp.Less(data[a], data[i]) {
|
||
|
i++
|
||
|
}
|
||
|
for i <= j && cmp.Less(data[a], data[j]) {
|
||
|
j--
|
||
|
}
|
||
|
if i > j {
|
||
|
break
|
||
|
}
|
||
|
data[i], data[j] = data[j], data[i]
|
||
|
i++
|
||
|
j--
|
||
|
}
|
||
|
return i
|
||
|
}
|
||
|
|
||
|
// partialInsertionSortOrdered partially sorts a slice, returns true if the slice is sorted at the end.
|
||
|
func partialInsertionSortOrdered[E cmp.Ordered](data []E, a, b int) bool {
|
||
|
const (
|
||
|
maxSteps = 5 // maximum number of adjacent out-of-order pairs that will get shifted
|
||
|
shortestShifting = 50 // don't shift any elements on short arrays
|
||
|
)
|
||
|
i := a + 1
|
||
|
for j := 0; j < maxSteps; j++ {
|
||
|
for i < b && !cmp.Less(data[i], data[i-1]) {
|
||
|
i++
|
||
|
}
|
||
|
|
||
|
if i == b {
|
||
|
return true
|
||
|
}
|
||
|
|
||
|
if b-a < shortestShifting {
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
data[i], data[i-1] = data[i-1], data[i]
|
||
|
|
||
|
// Shift the smaller one to the left.
|
||
|
if i-a >= 2 {
|
||
|
for j := i - 1; j >= 1; j-- {
|
||
|
if !cmp.Less(data[j], data[j-1]) {
|
||
|
break
|
||
|
}
|
||
|
data[j], data[j-1] = data[j-1], data[j]
|
||
|
}
|
||
|
}
|
||
|
// Shift the greater one to the right.
|
||
|
if b-i >= 2 {
|
||
|
for j := i + 1; j < b; j++ {
|
||
|
if !cmp.Less(data[j], data[j-1]) {
|
||
|
break
|
||
|
}
|
||
|
data[j], data[j-1] = data[j-1], data[j]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false
|
||
|
}
|
||
|
|
||
|
// breakPatternsOrdered scatters some elements around in an attempt to break some patterns
|
||
|
// that might cause imbalanced partitions in quicksort.
|
||
|
func breakPatternsOrdered[E cmp.Ordered](data []E, a, b int) {
|
||
|
length := b - a
|
||
|
if length >= 8 {
|
||
|
random := xorshift(length)
|
||
|
modulus := nextPowerOfTwo(length)
|
||
|
|
||
|
for idx := a + (length/4)*2 - 1; idx <= a+(length/4)*2+1; idx++ {
|
||
|
other := int(uint(random.Next()) & (modulus - 1))
|
||
|
if other >= length {
|
||
|
other -= length
|
||
|
}
|
||
|
data[idx], data[a+other] = data[a+other], data[idx]
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// choosePivotOrdered chooses a pivot in data[a:b].
|
||
|
//
|
||
|
// [0,8): chooses a static pivot.
|
||
|
// [8,shortestNinther): uses the simple median-of-three method.
|
||
|
// [shortestNinther,∞): uses the Tukey ninther method.
|
||
|
func choosePivotOrdered[E cmp.Ordered](data []E, a, b int) (pivot int, hint sortedHint) {
|
||
|
const (
|
||
|
shortestNinther = 50
|
||
|
maxSwaps = 4 * 3
|
||
|
)
|
||
|
|
||
|
l := b - a
|
||
|
|
||
|
var (
|
||
|
swaps int
|
||
|
i = a + l/4*1
|
||
|
j = a + l/4*2
|
||
|
k = a + l/4*3
|
||
|
)
|
||
|
|
||
|
if l >= 8 {
|
||
|
if l >= shortestNinther {
|
||
|
// Tukey ninther method, the idea came from Rust's implementation.
|
||
|
i = medianAdjacentOrdered(data, i, &swaps)
|
||
|
j = medianAdjacentOrdered(data, j, &swaps)
|
||
|
k = medianAdjacentOrdered(data, k, &swaps)
|
||
|
}
|
||
|
// Find the median among i, j, k and stores it into j.
|
||
|
j = medianOrdered(data, i, j, k, &swaps)
|
||
|
}
|
||
|
|
||
|
switch swaps {
|
||
|
case 0:
|
||
|
return j, increasingHint
|
||
|
case maxSwaps:
|
||
|
return j, decreasingHint
|
||
|
default:
|
||
|
return j, unknownHint
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// order2Ordered returns x,y where data[x] <= data[y], where x,y=a,b or x,y=b,a.
|
||
|
func order2Ordered[E cmp.Ordered](data []E, a, b int, swaps *int) (int, int) {
|
||
|
if cmp.Less(data[b], data[a]) {
|
||
|
*swaps++
|
||
|
return b, a
|
||
|
}
|
||
|
return a, b
|
||
|
}
|
||
|
|
||
|
// medianOrdered returns x where data[x] is the median of data[a],data[b],data[c], where x is a, b, or c.
|
||
|
func medianOrdered[E cmp.Ordered](data []E, a, b, c int, swaps *int) int {
|
||
|
a, b = order2Ordered(data, a, b, swaps)
|
||
|
b, c = order2Ordered(data, b, c, swaps)
|
||
|
a, b = order2Ordered(data, a, b, swaps)
|
||
|
return b
|
||
|
}
|
||
|
|
||
|
// medianAdjacentOrdered finds the median of data[a - 1], data[a], data[a + 1] and stores the index into a.
|
||
|
func medianAdjacentOrdered[E cmp.Ordered](data []E, a int, swaps *int) int {
|
||
|
return medianOrdered(data, a-1, a, a+1, swaps)
|
||
|
}
|
||
|
|
||
|
func reverseRangeOrdered[E cmp.Ordered](data []E, a, b int) {
|
||
|
i := a
|
||
|
j := b - 1
|
||
|
for i < j {
|
||
|
data[i], data[j] = data[j], data[i]
|
||
|
i++
|
||
|
j--
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func swapRangeOrdered[E cmp.Ordered](data []E, a, b, n int) {
|
||
|
for i := 0; i < n; i++ {
|
||
|
data[a+i], data[b+i] = data[b+i], data[a+i]
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func stableOrdered[E cmp.Ordered](data []E, n int) {
|
||
|
blockSize := 20 // must be > 0
|
||
|
a, b := 0, blockSize
|
||
|
for b <= n {
|
||
|
insertionSortOrdered(data, a, b)
|
||
|
a = b
|
||
|
b += blockSize
|
||
|
}
|
||
|
insertionSortOrdered(data, a, n)
|
||
|
|
||
|
for blockSize < n {
|
||
|
a, b = 0, 2*blockSize
|
||
|
for b <= n {
|
||
|
symMergeOrdered(data, a, a+blockSize, b)
|
||
|
a = b
|
||
|
b += 2 * blockSize
|
||
|
}
|
||
|
if m := a + blockSize; m < n {
|
||
|
symMergeOrdered(data, a, m, n)
|
||
|
}
|
||
|
blockSize *= 2
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// symMergeOrdered merges the two sorted subsequences data[a:m] and data[m:b] using
|
||
|
// the SymMerge algorithm from Pok-Son Kim and Arne Kutzner, "Stable Minimum
|
||
|
// Storage Merging by Symmetric Comparisons", in Susanne Albers and Tomasz
|
||
|
// Radzik, editors, Algorithms - ESA 2004, volume 3221 of Lecture Notes in
|
||
|
// Computer Science, pages 714-723. Springer, 2004.
|
||
|
//
|
||
|
// Let M = m-a and N = b-n. Wolog M < N.
|
||
|
// The recursion depth is bound by ceil(log(N+M)).
|
||
|
// The algorithm needs O(M*log(N/M + 1)) calls to data.Less.
|
||
|
// The algorithm needs O((M+N)*log(M)) calls to data.Swap.
|
||
|
//
|
||
|
// The paper gives O((M+N)*log(M)) as the number of assignments assuming a
|
||
|
// rotation algorithm which uses O(M+N+gcd(M+N)) assignments. The argumentation
|
||
|
// in the paper carries through for Swap operations, especially as the block
|
||
|
// swapping rotate uses only O(M+N) Swaps.
|
||
|
//
|
||
|
// symMerge assumes non-degenerate arguments: a < m && m < b.
|
||
|
// Having the caller check this condition eliminates many leaf recursion calls,
|
||
|
// which improves performance.
|
||
|
func symMergeOrdered[E cmp.Ordered](data []E, a, m, b int) {
|
||
|
// Avoid unnecessary recursions of symMerge
|
||
|
// by direct insertion of data[a] into data[m:b]
|
||
|
// if data[a:m] only contains one element.
|
||
|
if m-a == 1 {
|
||
|
// Use binary search to find the lowest index i
|
||
|
// such that data[i] >= data[a] for m <= i < b.
|
||
|
// Exit the search loop with i == b in case no such index exists.
|
||
|
i := m
|
||
|
j := b
|
||
|
for i < j {
|
||
|
h := int(uint(i+j) >> 1)
|
||
|
if cmp.Less(data[h], data[a]) {
|
||
|
i = h + 1
|
||
|
} else {
|
||
|
j = h
|
||
|
}
|
||
|
}
|
||
|
// Swap values until data[a] reaches the position before i.
|
||
|
for k := a; k < i-1; k++ {
|
||
|
data[k], data[k+1] = data[k+1], data[k]
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
// Avoid unnecessary recursions of symMerge
|
||
|
// by direct insertion of data[m] into data[a:m]
|
||
|
// if data[m:b] only contains one element.
|
||
|
if b-m == 1 {
|
||
|
// Use binary search to find the lowest index i
|
||
|
// such that data[i] > data[m] for a <= i < m.
|
||
|
// Exit the search loop with i == m in case no such index exists.
|
||
|
i := a
|
||
|
j := m
|
||
|
for i < j {
|
||
|
h := int(uint(i+j) >> 1)
|
||
|
if !cmp.Less(data[m], data[h]) {
|
||
|
i = h + 1
|
||
|
} else {
|
||
|
j = h
|
||
|
}
|
||
|
}
|
||
|
// Swap values until data[m] reaches the position i.
|
||
|
for k := m; k > i; k-- {
|
||
|
data[k], data[k-1] = data[k-1], data[k]
|
||
|
}
|
||
|
return
|
||
|
}
|
||
|
|
||
|
mid := int(uint(a+b) >> 1)
|
||
|
n := mid + m
|
||
|
var start, r int
|
||
|
if m > mid {
|
||
|
start = n - b
|
||
|
r = mid
|
||
|
} else {
|
||
|
start = a
|
||
|
r = m
|
||
|
}
|
||
|
p := n - 1
|
||
|
|
||
|
for start < r {
|
||
|
c := int(uint(start+r) >> 1)
|
||
|
if !cmp.Less(data[p-c], data[c]) {
|
||
|
start = c + 1
|
||
|
} else {
|
||
|
r = c
|
||
|
}
|
||
|
}
|
||
|
|
||
|
end := n - start
|
||
|
if start < m && m < end {
|
||
|
rotateOrdered(data, start, m, end)
|
||
|
}
|
||
|
if a < start && start < mid {
|
||
|
symMergeOrdered(data, a, start, mid)
|
||
|
}
|
||
|
if mid < end && end < b {
|
||
|
symMergeOrdered(data, mid, end, b)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// rotateOrdered rotates two consecutive blocks u = data[a:m] and v = data[m:b] in data:
|
||
|
// Data of the form 'x u v y' is changed to 'x v u y'.
|
||
|
// rotate performs at most b-a many calls to data.Swap,
|
||
|
// and it assumes non-degenerate arguments: a < m && m < b.
|
||
|
func rotateOrdered[E cmp.Ordered](data []E, a, m, b int) {
|
||
|
i := m - a
|
||
|
j := b - m
|
||
|
|
||
|
for i != j {
|
||
|
if i > j {
|
||
|
swapRangeOrdered(data, m-i, m, j)
|
||
|
i -= j
|
||
|
} else {
|
||
|
swapRangeOrdered(data, m-i, m+j-i, i)
|
||
|
j -= i
|
||
|
}
|
||
|
}
|
||
|
// i == j
|
||
|
swapRangeOrdered(data, m-i, m, i)
|
||
|
}
|