package bulletproof import ( "github.com/gtank/merlin" "github.com/pkg/errors" "source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/core/curves" ) // RangeVerifier is the struct used to verify RangeProofs // It specifies which curve to use and holds precomputed generators // See NewRangeVerifier() for verifier initialization. type RangeVerifier struct { curve curves.Curve generators *ippGenerators ippVerifier *InnerProductVerifier } // NewRangeVerifier initializes a new verifier // It uses the specified domain to generate generators for vectors of at most maxVectorLength // A verifier can be used to verify range proofs for vectors of length less than or equal to maxVectorLength // A verifier is defined by an explicit curve. func NewRangeVerifier(maxVectorLength int, rangeDomain, ippDomain []byte, curve curves.Curve) (*RangeVerifier, error) { generators, err := getGeneratorPoints(maxVectorLength, rangeDomain, curve) if err != nil { return nil, errors.Wrap(err, "range NewRangeProver") } ippVerifier, err := NewInnerProductVerifier(maxVectorLength, ippDomain, curve) if err != nil { return nil, errors.Wrap(err, "range NewRangeProver") } return &RangeVerifier{curve: curve, generators: generators, ippVerifier: ippVerifier}, nil } // Verify verifies the given range proof inputs // It implements the checking of L65 on pg 20 // It also verifies the dot product of <l,r> using the inner product proof\ // capV is a commitment to v using blinding factor gamma // n is the power that specifies the upper bound of the range, ie. 2^n // g, h, u are unique points used as generators for the blinding factor // transcript is a merlin transcript to be used for the fiat shamir heuristic. func (verifier *RangeVerifier) Verify(proof *RangeProof, capV curves.Point, proofGenerators RangeProofGenerators, n int, transcript *merlin.Transcript) (bool, error) { // Length of vectors must be less than the number of generators generated if n > len(verifier.generators.G) { return false, errors.New("ipp vector length must be less than maxVectorLength") } // In case where len(a) is less than number of generators precomputed by prover, trim to length proofG := verifier.generators.G[0:n] proofH := verifier.generators.H[0:n] // Calc y,z,x from Fiat Shamir heuristic y, z, err := calcyz(capV, proof.capA, proof.capS, transcript, verifier.curve) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } x, err := calcx(proof.capT1, proof.capT2, transcript, verifier.curve) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } wBytes := transcript.ExtractBytes([]byte("getw"), 64) w, err := verifier.curve.NewScalar().SetBytesWide(wBytes) if err != nil { return false, errors.Wrap(err, "rangeproof prove") } // Calc delta(y,z) deltayz, err := deltayz(y, z, n, verifier.curve) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } // Check tHat: L65, pg20 tHatIsValid := verifier.checktHat(proof, capV, proofGenerators.g, proofGenerators.h, deltayz, x, z) if !tHatIsValid { return false, errors.New("rangeproof verify tHat is invalid") } // Verify IPP hPrime, err := gethPrime(proofH, y, verifier.curve) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } capPhmu, err := getPhmu(proofG, hPrime, proofGenerators.h, proof.capA, proof.capS, x, y, z, proof.mu, n, verifier.curve) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } ippVerified, err := verifier.ippVerifier.VerifyFromRangeProof(proofG, hPrime, capPhmu, proofGenerators.u.Mul(w), proof.tHat, proof.ipp, transcript) if err != nil { return false, errors.Wrap(err, "rangeproof verify") } return ippVerified, nil } // L65, pg20. func (*RangeVerifier) checktHat(proof *RangeProof, capV, g, h curves.Point, deltayz, x, z curves.Scalar) bool { // g^tHat * h^tau_x gtHat := g.Mul(proof.tHat) htaux := h.Mul(proof.taux) lhs := gtHat.Add(htaux) // V^z^2 * g^delta(y,z) * Tau_1^x * Tau_2^x^2 capVzsquare := capV.Mul(z.Square()) gdeltayz := g.Mul(deltayz) capTau1x := proof.capT1.Mul(x) capTau2xsquare := proof.capT2.Mul(x.Square()) rhs := capVzsquare.Add(gdeltayz).Add(capTau1x).Add(capTau2xsquare) // Compare lhs =? rhs return lhs.Equal(rhs) } // gethPrime calculates new h prime generators as defined in L64 on pg20. func gethPrime(h []curves.Point, y curves.Scalar, curve curves.Curve) ([]curves.Point, error) { hPrime := make([]curves.Point, len(h)) yInv, err := y.Invert() yInvn := getknVector(yInv, len(h), curve) if err != nil { return nil, errors.Wrap(err, "gethPrime") } for i, hElem := range h { hPrime[i] = hElem.Mul(yInvn[i]) } return hPrime, nil } // Obtain P used for IPP verification // See L67 on pg20 // Note P on L66 includes blinding factor hmu, this method removes that factor. func getPhmu(proofG, proofHPrime []curves.Point, h, capA, capS curves.Point, x, y, z, mu curves.Scalar, n int, curve curves.Curve) (curves.Point, error) { // h'^(z*y^n + z^2*2^n) zyn := multiplyScalarToScalarVector(z, getknVector(y, n, curve)) zsquaretwon := multiplyScalarToScalarVector(z.Square(), get2nVector(n, curve)) elemLastExponent, err := addPairwiseScalarVectors(zyn, zsquaretwon) if err != nil { return nil, errors.Wrap(err, "getPhmu") } lastElem := curve.Point.SumOfProducts(proofHPrime, elemLastExponent) // S^x capSx := capS.Mul(x) // g^-z --> -z*<1,g> onen := get1nVector(n, curve) zNeg := z.Neg() zinvonen := multiplyScalarToScalarVector(zNeg, onen) zgdotonen := curve.Point.SumOfProducts(proofG, zinvonen) // L66 on pg20 P := capA.Add(capSx).Add(zgdotonen).Add(lastElem) hmu := h.Mul(mu) Phmu := P.Sub(hmu) return Phmu, nil } // Delta function for delta(y,z), See (39) on pg18. func deltayz(y, z curves.Scalar, n int, curve curves.Curve) (curves.Scalar, error) { // z - z^2 zMinuszsquare := z.Sub(z.Square()) // 1^n onen := get1nVector(n, curve) // <1^n, y^n> onendotyn, err := innerProduct(onen, getknVector(y, n, curve)) if err != nil { return nil, errors.Wrap(err, "deltayz") } // (z - z^2)*<1^n, y^n> termFirst := zMinuszsquare.Mul(onendotyn) // <1^n, 2^n> onendottwon, err := innerProduct(onen, get2nVector(n, curve)) if err != nil { return nil, errors.Wrap(err, "deltayz") } // z^3*<1^n, 2^n> termSecond := z.Cube().Mul(onendottwon) // (z - z^2)*<1^n, y^n> - z^3*<1^n, 2^n> out := termFirst.Sub(termSecond) return out, nil }