FROST pseudocode for Coinbase

Daniel Zhou

May 2021

This document abstracts out the FROST pseudocode for implementation and research.

1 Common Notations

G: EC base point of a group of prime order ¢ in which DDH assumption is hard.

H: hash functions mapping to Z

e n: total number of participants in the protocol.

t: threshold in the protocol.

2 Shamir Secret Sharing

We first recall Shamir secret sharing and Feldman Verifiable Secret Sharing that FROST uses and we
have implemented them.

Algorithm 1 [z1, 22, - ,x,] < ShamirShare(z,t,q, [p1, - ,Pn))
Input: z,t,q,[p1,- - ,Dn)

1. forie[1,---,t]
Sample a; € Z,

.foriel, - ,n]

2

3

4. ifp; =0, abort
5. my=x+aip;+api + - +ap; mod g
6

. Return [z, -+, xy)




Algorithm 2 = <— Reveal(q, [p1, z1],- -, [Pt+1, Tt+1])

Input: q, [pla xl}v ) [pt+17 l't+1]
1. Setz =0

2. Fori €L, ,t+1]

4 Forje[l, - t+1]

5. If i = j, continue

6 Compute ¢ = ¢ x pjp_jpi mod ¢
7. Compute z =2+ ¢ mod ¢

8. Return x.

3 Feldman VSS

Algorithm 3 [vg, - -+ ,v¢], [%1, - , ] < FeldmanShare(G, z, ¢, ¢, [p1,- - ,Pn])

1. Compute vy =z -G
2. Forie[l,--- 1]

3. sample a; < Z,
4. v, =a; -G

5. Foriel, - ,n]

6. If p; = 0, abort
7. T =+ a1p; + azp? + -+ + a;pt mod ¢
8. Return [vg, -+ , v, [T1, -+, Znl.

Algorithm 4 0/1 < FeldmanVerify (G, ¢, z;, p;, [vo, - - - , v¢])

1. Setv = vy
. Forjell, -t

J

¢j =p; mod q

2
3
4. V=v+¢jv;
5. If v =x; - G, return 1.
6

. Else return 0




4 Schnorr Signature

FROST uses Schnorr signature as a proof of knowledge as a subroutine. We describe Schnorr signature
here. Schnorr signature is simply the standard Sigma protocol proof of knowledge of the discrete log of
verification key, made non-interactive with the Fiat-Shamir transform. In Schnorr signature, the secret key
is sk = s € Zg and verification key vk = s - G

Algorithm 5 o < SchnorrSign(sk, m)

1. Sample random nonce k < Z,, compute R =k - G
2. Compute challenge ¢ = H(m, R)
3. Compute z =k +s-c mod q € Z,

4. Output signature o = (z, ¢).

Algorithm 6 0/1 < SchnorrVerify(c, m, vk)

1. Parse 0 = (z,¢)
2. Compute R' =z -G+ (—c) - vk
3. Compute ¢/ = H(m, R’)

4. Output 1 if ¢ = ¢/, otherwise output 0.

5 FROST

FROST[1] minimizes the network overhead of producing Schnorr signatures in a threshold setting while
allowing for unrestricted parallelism of signing operations and only a threshold number of signing partici-
pants. In the original technical report, it describes the protocol with a signature aggregator (SA) role. Includ-
ing SA allows for improved efficiency in their description. In particular, with SA, the protocol can either
finish in two rounds or in one-round with a preprocessing step However, we prefer a decentralized setting
so we focus on an instantiation wihtout a SA. Fortunately, FROST also works without a SA. To do so, each
participant simply performs a broadcast in place of SA performing coordination. We adapt and describe
the FROST protocol without a SA below. The protocol has a 2-round DKG phase and a 3-round signing
phase. The round complexity of signing can be reduced to 2 rounds by preprocessing the first round. That
is, each participant pre-compute a fixed number, say @, of commitments for further use so that we don’t
need to generate commitments every time.



5.1 FROST Key Generation Round 1

Algorithm 7 (C;, wy, ¢;, {x;i ; } je[n)) + KeyGenRoundl1(g, ¢, G,t,n)

Takes input g, ¢, G, t, n, each participant P; does the following steps.

1. Sample secret s = a; ¢ < Z4 and run Feldman Share

(Aio, -, Ait), (Tin, - ,Tin) < FeldmanShare(s)

Set C; = (Ai0,- -+, Ait)
Sample k; < Z,.
Compute R; = k; - G
Compute ¢; = H(i,CTX, s - G, R;), where CTX is a fixed context string.
Compute w; = k; +5-¢; mod ¢

Broadcast (C;, w;, ¢;) to other participants

N o ok » N

P2PSend (j, z;, ;) to each participant P; and keep (i, x; ;) for himself.

5.2 FROST Key Generation Round 2

Algorithm 8 (vk, sk;, vk;) < KeyGenRound2(CTX, (C;,wj, ¢;) jen]s 12),i}jemn))

1. Parse C; = (Ajo, -+, A;j+) foreach j € [n]
. For j € [n]
if j == 4, continue

2
3
4. Check equation ¢; = H(j,CTX, Ajo,w; - G+ (—c;) - Aj0), abort if check fails.
5 FeldmanVerify(g, ¢, z;:, Aj o, - , Aj+). Abort if check fails.

6

. Compute signing key share
Ski = Z Ijﬂ'
j=1

and store it locally.
7. Compute verification key share vk; = sk; - G.
8. Compute verification key vk = >°7_| Ajo

9. Broadcast (vk,vk;) and store sk; locally.




5.3 FROST Signing Round 1

Algorithm 9 (d;, e;, D;, E;) < SignRound1(g, ¢, G, t,n)

Each participant P; does the following
1. Sample (d;, e;) < Z} X Z;;
2. Compute (D;, E;) < (d; - G,e; - G)
3. Broadcast (i, D;, E;) and store (d;, D;, e;, E;) locally.

5.4 FROST Signing Round 2

Algorithm 10 (z;, vk;) < SignRound2({j, D;, E;}jcp, ... 4, t, m)

The signing member P, does the following
1. Check message m is valid, abort if check fails.

Check Dy, E; € G for each j are valid, abort if check fails. Store {D;, E; } ;e[
Forje|[l,--- ¢

Compute r; = H(j,m,{Dj, E;}je)

Compute R; = D; +1; - I

R=R+R;
Compute ¢ = H(m, R).
Store ¢, R and all R;

R B

Compute z; = d; + e; - ; + L; - sk; - ¢, where L; is Lagrange coefficient

Li= ][] J

i
=1 g

10. Broadcast z;, vk; to other participants.




5.5 FROST Signing Round 3

Algorithm 11 o « SignRound3({z;, vk;}jef1,... 1], 1, )

Each participant P; does the following

1. Forje[l,---,t

2 Verify equation z; - G = R; + ¢ L; - vk;, abort if check fails.
3 Compute z = z + z;

4. Self-verify the signature o = (z, ¢):

5. R =z-G+(—c) vk

6 ¢ =H(m,R)

7 Output 1 if ¢ = ¢, otherwise output 0.

8. Output the signature o = (z, ¢) along with message m.

References

[1] Chelsea Komlo and Ian Goldberg. FROST: Flexible Round-Optimized Schnorr Threshold Signatures.
Internet-Draft draft-komlo-frost-00, Internet Engineering Task Force, August 2020. Work in Progress.



	Common Notations
	Shamir Secret Sharing
	Feldman VSS
	Schnorr Signature
	FROST
	FROST Key Generation Round 1
	FROST Key Generation Round 2
	FROST Signing Round 1
	FROST Signing Round 2
	FROST Signing Round 3


