
FROST Implementation Security Assessment

Coinbase, Inc.
November 22, 2021 – Version 1.0

Prepared for
Jeff Barksdale

Prepared by
Marie-Sarah Lacharité
Giacomo (Jack) Pope



Executive Summary
Synopsis
During the autumn of 2021, Coinbase, Inc. engaged
NCC Group’s Cryptography Services Practice to conduct
a security assessment of their FROST implementation
in Go. The FROST (Flexible Round-Optimized Schnorr
Threshold) signature scheme1 includes multi-party pro-
tocols for Distributed Key Generation (DKG) and signing
a message. DKG allows n parties to jointly generate a
key, which they split into shares such that any set of
t ≤ n parties can jointly generate a signature on a
message. Coinbase’s FROST implementation is part of
a larger library, kryptology, which provides an API with
functions for each round of DKG and signing.

Source code for the kryptology library was provided via
a SendSafely workspace set up by Coinbase. Only the
FROST implementation and its dependencies in other
modules of the library were in scope.

The review comprised 15 person-days over 3 calendar
weeks and was delivered by one NCC Group consultant
who was assisted by a shadow resource for all three
weeks.

Scope
NCC Group’s evaluation included:

• pkg/core/curves: implementations of several elliptic
curve groups that may be used for DKG or FROST
signing.

• pkg/sharing: implementations of Shamir secret shar-
ing and Feldman Verifiable Secret Sharing (VSS) used
in DKG and FROST signing.

• pkg/dkg/frost: implementation of FROST’s two-round
DKG protocol. The DKG API provides the functions
NewDkgParticipant(), Round1(), and Round2().

• pkg/ted25519: implementation of a three-round vari-
ant of FROST’s signing protocol without a Signature
Aggregator (SA). The FROST signing API provides the
functions NewSigner(), SignRound1(), and SignRou
nd2().

Limitations
NCC Group’s evaluation of FROST covered only the code
in the kryptology library, not its use. The protocol
could be rendered insecure due to a number of factors
outside of the scope of the library, such as:

• authentication of parties in DKG and signing;

• encryption, authentication, and reliable delivery of
messages sent during DKG and signing;

• serialization and deserialization of messages sent
during DKG and signing;

• ejection of a party from the set of potential signers
after detection of their misbehavior;

• secure low-level elliptic curve group primitives pro-
vided by dependencies outside of kryptology.

Key Findings
The assessment uncovered a set of common application
flaws. The most notable findings were:

• Error codes returned by system-level randomness
APIs are not checked, which may lead to weak secret
key shares and nonces (finding NCC-E002578-002 on
page 5).

• Values received from other parties are not sufficiently
validated, which may cause the Go process to panic
and terminate during DKG (finding NCC-E002578-
008 on page 10) or may allow a misbehaving partic-
ipant to evade detection during signing and cause all
parties to output an invalid signature (finding NCC-
E002578-010 on page 13).

Strategic Recommendations
• Augment library documentation to give users guid-
ance on how to securely use the API.
– In particular, clearly outline what are the responsi-
bilities of the caller (e.g. checking that the message
is indeed one they want to sign, authenticating
participants) and what are the responsibilities of the
library (e.g. verifying proofs).

• Expand the suite of test functions to ensure that
all code paths and edge cases receive coverage,
especially validation of scalars, curve points, and lists
received from other parties.

• Keep up to date with the progression of the FROST
IRTF Internet Draft,2 which will be updated at least
once every 6 months while it is being considered for
publication as an RFC (Request for Comments). The
next update should be in February 2022.
– Consider also following the author’s working copy
of the Internet Draft on their GitHub page,3 which
may receive more frequent updates.

– Consider following discussions about FROST on the
mailing list4 of the CFRG (Crypto Forum Research
Group).

1https://eprint.iacr.org/2020/852
2https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/
3https://github.com/chelseakomlo/frost-spec
4https://mailarchive.ietf.org/arch/browse/cfrg/?q=frost
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Dashboard

Finding Breakdown
Critical issues 0
High issues 0

Medium issues 4

Low issues 5

Informational issues 2
Total issues 11

Category Breakdown
Configuration 2

Cryptography 7

Data Validation 1

Denial of Service 1

Component Breakdown
DKG 1

DKG, Signing 2

FROST 1

General 2

Signing 1

curves 3

curves, DKG, Signing 1

Key
Critical High Medium Low Informational
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Table of Findings
For each finding, NCC Group uses a composite risk score that takes into account the severity of the risk, application’s
exposure and user population, technical difficulty of exploitation, and other factors. For an explanation of NCC Group’s
risk rating and finding categorization, see Appendix B on page 42.

Title Status ID Risk

Calls to Read() in Scalar.Random() Functions May Silently Fail Reported 002 Medium

Curve P256 Validates Points on the Wrong Curve Reported 004 Medium
Insufficient Validation May Lead to Panics Updated 008 Medium
Insufficient Validation May Lead to Undetected Misbehaving Parties and
Invalid Signatures

New 010 Medium

Outdated Module Versions in go.sum, Outdated Minimum Go Version in
go.mod

Reported 001 Low

Generation of Random Scalars and Schnorr Challenges Uses Unnecessary
Hash-to-Field Operation

Updated 003 Low

Code is Not Constant-Time Reported 005 Low
Implementation Does Not Identify Misbehaving Participants Reported 006 Low
Minor Deviations from FROST Specification Updated 009 Low
FROST Implementation Does Not Follow Most Recent Specification New 007 Informational

ScalarP256’s SetBytesWide() Method May Return Incorrect or Non-
Canonical Scalars

New 011 Informational
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Finding Details
Finding Calls to Read() in Scalar.Random() Functions May Silently Fail

Risk Medium Impact: High, Exploitability: Undetermined

Identifier NCC-E002578-002

Status Reported

Category Data Validation

Component curves

Location • kryptology/pkg/core/curves/bls12381_curve.go (line 43)
• kryptology/pkg/core/curves/ed25519_curve.go (line 33)
• kryptology/pkg/core/curves/k256_curve.go (line 28)
• kryptology/pkg/core/curves/p256_curve.go (line 28)
• kryptology/pkg/core/curves/pallas_curve.go (line 213)

Impact If access to crypto/rand ever fails for any reason, the library will use weak secret key shares,
nonces, and other security-relevant values.

Description Each of the various curves in kryptology/pkg/core/curves implements a Scalar interface (spec-
ified in kryptology/pkg/core/curves/curve.go) including a Random() function that takes as in-
put a reader (of type io.Reader) from which it reads some random bytes. This Random()
function is used in various places in the code in scope for this review:

• when a blinding factor is sampled in Pedersen.Split() (pkg/sharing/pedersen.go, line
93),

• when apolynomial’s coefficients are sampled in Polynomial.Init() (pkg/sharing/polynomial.go,
line 22),

• when an initial share of the long-term secret key is sampled in round 1 of DKG (pkg/dkg/
frost/dkg_round1.go, line 44),

• when a share of the randomnonce is sampled in round1ofDKG (pkg/dkg/frost/dkg_round1.go,
line 66), and

• when the components di and ei of the random nonce are sampled in round 1 of signing
(pkg/ted25519/frost/round1.go, lines 32 and 34).

The following excerpt from k256_curve.go is a representative example of an implementation
of one of these Random() functions. (The functions for the other curves listed in the “Location”
field above are very similar.) The function first attempts to read 64 bytes from reader and then
hashes them to a scalar using a curve-specific hash function.

28 func (s *ScalarK256) Random(reader io.Reader) Scalar {
29 if reader == nil {
30 return nil
31 }
32 var seed [64]byte
33 _, _ = reader.Read(seed[:])
34 return s.Hash(seed[:])
35 }

The io.Reader interface stipulates that the Read() function returns two values: the number
of bytes read (n) and any error that was encountered (err). However, the return values of
reader.Read() (highlighted on line 33) are ignored; the function does not check whether
Read() was able to read all 64 bytes, nor whether there were any other errors. Thus, if an
error occurs, Random() will silently proceed to hash a slice of all zero bytes, which will not
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return a uniformly random scalar.

Currently, the only io.Reader that appears to be used in kryptology is crypto/rand, a
cryptographically secure random number generator that uses the randomness APIs of the
system it is running on. Its documentation5 states that “[o]n return, n == len(b) if and only if
err == nil.” Therefore, it would be sufficient to check only one of the two return values.

Recommendation • Whenever the Read() function of an object implementing the io.Reader interface is called,
check its return values and propagate the error as necessary in the calling functions.

• Specifically, in the Random() implementation of all of the curves listed in this finding, check
that the call to Read() returned the expected number of bytes and return an error if not.

Coinbase Category Security / Implementation issues

5https://pkg.go.dev/crypto/rand
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Finding Curve P256 Validates Points on the Wrong Curve

Risk Medium Impact: High, Exploitability: Undetermined

Identifier NCC-E002578-004

Status Reported

Category Cryptography

Component curves

Location kryptology/pkg/core/curves/p256_curve.go (line 346)

Impact Curve P256 validates points are on K256 (secp256k1) rather than P256 (secp256r1). In gen-
eral, this could allow invalid point attacks leading to the recovery of secrets. In FROST, this
could allow misbehaving parties to go undetected during the key generation and signing
protocols, leading to incorrect signatures.

Description An invalid point attack is where one party is able to supply a point P (x, y) that does not satisfy
the chosen curve equation E : y2 = x3 + Ax + B (mod p), and another party uses this
point as part of a computation with a secret value. The result of this computation may leak
information about the second user’s secret value.

Proper implementation requires that before performing any operations on a user-supplied
point, the point is checked to be on the curve (and abort otherwise). When this check is
omitted or improperly implemented, an attacker may be able to force another party to, in
effect, perform elliptic curve operations over a new curve E′ : y2 = x3 + Ax + B′ (mod p)

that may offer significantly reduced security.

Due to the Pohlig-Hellman algorithm,6 the hardness of the discrete logarithm problem for an
elliptic curve group is bounded by (the square-root of) the largest prime divisor of the group’s
order. For curves such as NIST-P256 (secp256r1) and the Bitcoin curve K256 (secp256k1), the
groups have a prime order and offer 128-bit security. When an invalid point attack can be
performed, the modification of the curve equation allows the attacker to select a new curve,
where the group order may have many small prime factors. Therefore, an invalid point attack
can heavily reduce the security of the discrete logarithm problem on the curve and hence the
security of any protocol that relies on this hardness (such as FROST). An example of this attack
was recently carried out against the Bluetooth pairing protocol in 2018.7

The vulnerability appears within kryptology in the file pkg/core/curves/p256_curve.go; it is
introduced by the point validation function for P256:

346 func (p *PointP256) IsOnCurve() bool {
347 return btcec.S256().IsOnCurve(p.x, p.y)
348 }

Rather than ensuring the point is on secp256r1 as intended, the point is checked to be
on the secp256k1 curve instead. (This function may have been copied and pasted from
k256_curve.go.) With high probability, this bug will result in the function returning false and
legitimate, valid curve points will be incorrectly identified as invalid.

The IsOnCurve() function does not appear to be directly used within the FROST protocol’s
implementation. If it were, it may lead to misbehaving parties evading detection during key
6https://en.wikipedia.org/wiki/Pohlig%E2%80%93Hellman_algorithm
7https://www.cs.technion.ac.il/~biham/BT/bt-fixed-coordinate-invalid-curve-attack.pdf
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generation (which involves verifying other parties’ signatures for proof of knowledge of their
shares ai0 of the long-term secret key) or during signing (which involves jointly computing the
group commitmentR as a function of the participants’ nonce commitment partsDℓ and Eℓ).

However, the IsOnCurve() function is used in other (out of scope) areas of kryptology, for
example, in pkg/tecdsa/gg20/participant/dkg_round3.go:

99 // This is a sanity check to make sure nothing went wrong when
100 // computing the public key
101 if !dp.Curve.IsOnCurve(y.X, y.Y) || y.IsIdentity() {
102 return nil, fmt.Errorf("invalid public key")
103 }

For an attacker, this could allow an invalid point attack. By submitting a point which is valid on
the Bitcoin curve, the NIST-P256 curve equation and corresponding arithmetic are modified
to a new curve which is neither secp256r1 nor secp256k1. Using a small sample of points
from secp256k1 and performing an invalid point attack, it was found that the resulting curve
equation offered as little as 30-bit security due to the smallness of the prime factors of the
point’s group order.

The P256 function containing the bug is not covered by any tests. Additionally, when a point
is set on the curve, the Set() function calls directly elliptic.P256().IsOnCurve(x, y)
rather than the wrapper function defined on line 346 of p256_curve.go.

416 func (p *PointP256) Set(x, y *big.Int) (Point, error) {
417 // check is identity or on curve
418 xx := subtle.ConstantTimeCompare(x.Bytes(), []byte{})
419 yy := subtle.ConstantTimeCompare(y.Bytes(), []byte{})
420 // Checks are constant time
421 onCurve := elliptic.P256().IsOnCurve(x, y)
422 if !onCurve && (xx&yy) != 1 {
423 return nil, fmt.Errorf("invalid coordinates")
424 }
425 x = new(big.Int).Set(x)
426 y = new(big.Int).Set(y)
427 return &PointP256{x, y}, nil
428 }

As a result, the vulnerability is introduced when explicitly calling the isOnCurve(Point) func-
tion, rather than the Set(x, y) function as used in pkg/core/curves/p256_curve_test.go.

More generally, any user-submitted points must be checked to be valid before processing.
For compressed points, this is implicitly handled since only valid x-coordinates are lifted, and
invalid x-coordinates are mapped to the identity point. For uncompressed points, the code
for the secp256r1 and secp256k1 curves implement a bytes-to-point function:

476 func (p *PointP256) FromAffineUncompressed(bytes []byte) (Point, error) {
477 if len(bytes) != 65 {
478 return nil, fmt.Errorf("invalid byte sequence")
479 }
480 if bytes[0] != 4 {
481 return nil, fmt.Errorf("invalid sign byte")
482 }
483 x := new(big.Int).SetBytes(bytes[1:33])
484 y := new(big.Int).SetBytes(bytes[33:])
485 return &PointP256{x, y}, nil
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486 }

Above is the example from pkg/core/curves/p256_curve.go, but the function is essentially
identical for pkg/core/curves/k256_curve.go. Here, the point is returned without any valida-
tion, which could allow an invalid curve attack if at any point this function is executed on user
input. For the BLS12-381 curves, Pallas/Vesta curves and Ed25519 curve, the point is created
using packages outside of the scope of our audit and so were unable to be checked.

An attack against secp256r1 and secp256k1 can be mitigated by asserting IsOnCurve() with
the supplied coordinates before returning the point and returning an error if the point is not
on the curve.

The fix for the vulnerability appearing on line 347 requires only modifying the above function
using the (intended) elliptic.P256().IsOnCurve(P.x, P.y), which will ensure all sup-
plied points are on the correct curve, maintaining the 128-bit security promised by secp256r1.
Note that this function is not constant-time and that Go’s crypto/elliptic package offers
this check in constant time only for P224 and P521. (See elliptic documentation.8)

Recommendation • Repair the PointP256 function IsOnCurve() (pkg/core/curves/p256_curve.go) such that it
checks points are on the correct curve.

func (p *PointP256) IsOnCurve() bool {
return elliptic.P256().IsOnCurve(p.x, p.y)

}

• Include IsOnCurve() in the tests and allow for both positive and negative test cases for the
function.

• Ensure that thewrapper functions are consistent. The Set()wrapper for a curve should use
the defined IsOnCurve() function rather than calling to the curve’s defaults, which would
have allowed this bug to be identified in testing.

• Ensure that all point arithmetic for an elliptic curve is performed on coordinates (x, y)which
lie on the curve.

Coinbase Category Cryptographic / Mathematical

8https://cs.opensource.google/go/go/+/refs/tags/go1.17.3:src/crypto/elliptic/elliptic.go;l=85
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Finding Insufficient Validation May Lead to Panics

Risk Medium Impact: High, Exploitability: Undetermined

Identifier NCC-E002578-008

Status Updated

Category Denial of Service

Component DKG

Location • kryptology/pkg/dkg/frost/dkg_round1.go
• kryptology/pkg/dkg/frost/dkg_round2.go

Impact • Misbehaving parties can trigger other parties to panic during DKG, resulting in process
termination.

• An incorrect local configuration can trigger a panic.

Description The FROST Distributed Key Generation (DKG) protocol is implemented in two main methods:
DkgParticipant.Round1() (pkg/dkg/frost/dkg_round1.go) and DkgParticipant.Round2(
) (pkg/dkg/frost/dkg_round2.go). This finding is about how insufficient validation of the local
DkgParticipant struct (in round 1) and received messages (in round 2) may lead to panics
or other errors.

Local DkgParticipant struct
DkgParticipant is a struct (defined in pkg/dkg/frost/participant.go) with the following mem-
bers:

type DkgParticipant struct {
round int
Curve *curves.Curve
otherParticipantShares map[uint32]*dkgParticipantData
Id uint32
SkShare curves.Scalar
VerificationKey curves.Point
VkShare curves.Point
feldman *sharing.Feldman
verifiers *sharing.FeldmanVerifier
secretShares []*sharing.ShamirShare
ctx byte

}

The library’s frost package provides a convenience function NewDkgParticipant() (pkg/
dkg/frost/participant.go) that creates a DkgParticipant, however, not all users of this pack-
agemay use this function, and users couldmodify the values of any of the (exported)members
of the DkgParticipant struct. Therefore, all DkgParticipantmethods should verify that the
struct is valid and consistent with itself.

First, there is some redundancy in the information in this struct. For example, the particular
elliptic curve group is captured in both the Curve member and in feldman, which is a struct
that also has a curve member. In DkgParticipant.Round1(), if the type of DkgParticip
ant.Curve.Scalar is different than the type of DkgParticipant.feldman.curve.Scalar,
then a panic will be triggered by calling dp.feldman.Split() (line 56). This would be due to
the scalar type of the s argument (which comes from dp.Curve.Scalar) being different than
the type of dp.feldman.curve.Scalar. The Split()method calls Shamir.getPolyAndSha
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res(), which calls poly.Evaluate(), where the panic occurs (pkg/sharing/polynomial.go,
line 31, copied below for reference). In Evaluate(), the scalar type of out is ultimately
determined by the s argument, while the type of its argument x is ultimately determined
by dp.feldman.curve.Scalar. When the types of out and x do not match, Mul() returns
nil, which Evaluate() proceeds to try to dereference when it calls Add() on it, resulting in
the panic.

func (p Polynomial) Evaluate(x curves.Scalar) curves.Scalar {
degree := len(p.Coefficients) - 1
out := p.Coefficients[degree].Clone()
for i := degree - 1; i >= 0; i-- {

out = out.Mul(x).Add(p.Coefficients[i])
}
return out

}

Another example is the way the DkgParticipant struct captures the total number of partic-
ipants: dp.feldman has a limit member, and dp.otherParticipantShares is a map that
should contain dp.feldman.limit-1 elements. One of the outputs of round 1 is p2pSend
, a slice containing all of the secret shares (to be sent individually to each other party). Its
length is determined by the length of dp.otherParticipantShares, and its contents are
taken from shares, which is a slice whose length depends on dp.feldman.limit. If the
dp.otherParticipantShares map does not contain the correct number of keys, or those
keys are not in the correct range (1 to dp.feldman.limit), then either not enough shares
will be output in p2pSend, or there will be a panic as a result of an index out of bounds error
(line 99).

Lastly, note that the DkgParticipant struct’s member Id has type uint32, but when forming
message hashes for the Schnorr PoK, this value is converted to a byte (line 74), which silently
truncates the top 24 bits. This may lead to unexpected results.

Received Messages
In round 2, each party processes the Round1Bcastmessage it received from each other party:

type Round1Bcast struct {
verifiers *sharing.FeldmanVerifier
wi, ci curves.Scalar

}

The types of these values should be validated for consistency with each other and with the
receiving party’s DkgParticipant struct, dp, before operating on them.

The wi value should be checked to be a scalar of the same type as dp.Curve.Scalar, other-
wise prod1 will be nil (line 54) and a panic will arise as a result of the attempt to dereference
it (line 57).

The verifiers member is a FeldmanVerifier struct which contains a Commitments array
of points. During validation of another party’s message, a scalar multiplication operation is
applied to the first point of Commitments and the negative of the scalar ci (line 56). If they
are not on the same curve, prod2 will be nil, and thus so will prod (line 57), and a panic will
arise as a result of the attempt to dereference prod (line 66).

Note that line 70 takes care of checking that dp.Curve.Scalar has the same type as ci: the
Cmp() function will return -2 if not.
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Recommendation • Validate externally supplied data at every layer for defense in depth. This includes validating
the consistency of a DkgParticipant’s member values before they are used in any method
and validating the types of values received from other parties before they are used in com-
putations.

• Use data structures that do not contain duplicate or redundant information whenever pos-
sible to simplify checking of their consistency.

• Consider using the recover() function9 to gracefully handle panics.

Coinbase Category Security / Implementation issues

9https://golang.org/ref/spec#Handling_panics
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Finding Insufficient Validation May Lead to Undetected Misbehaving Parties and Invalid
Signatures

Risk Medium Impact: Medium, Exploitability: Undetermined

Identifier NCC-E002578-010

Status New

Category Cryptography

Component DKG, Signing

Location • kryptology/pkg/dkg/frost/dkg_round2.go
• kryptology/pkg/ted25519/frost/round2.go
• kryptology/pkg/ted25519/frost/round3.go

Impact Insufficient validation of received values (scalars, curve points, lists) may allow misbehaving
parties to go undetected and may lead to incorrect protocol output.

Description All scalars and points received from other parties should be validated, even if they have the
correct type (see finding NCC-E002578-008 on page 10). In particular, scalars should be in
the correct range relative to the group order (and non-zero when necessary), points should
be on the correct curve (and in the correct group when applicable), and lists should have the
correct lengths. Many of these checks do not occur in the code during DKG and signing.

• DKG, round 2: Each party must validate the Round1Bcast struct and the ShamirShare
it receives from each other party. Round1Bcast contains a FeldmanVerifier struct that
contains an array, Commitments, of points.
– Each point in this array should be checked to be on the curve the recipient expects, i.e.,
the receiving DkgParticipant’s Curve (dp.Curve), and in the correct subgroup if the
curve’s order is not prime.

– The length of the array should be checked to be what the recipient expects, i.e., dp.fel
dman.threshold.

Round1Bcast also contains two scalars, wi and ci.
– wi should be checked to be within the range 0 to q-1 (inclusive) where q is the order of
the group of dp.Curve.

– ci, which should be a hash value, should be checked to be within the range 1 to q-1
(inclusive) where q is the order of the group of dp.Curve. Note that ci should not be 0
according to the specification (draft-komlo-frost-00):
> Let G be a group with prime order q and generator g, and let H be a
> cryptographic hash function mapping to Z_(q)^(*). A Schnorr
> signature is generated over a message m by the following steps:

If these checks on the received Round1Bcast struct are done, then the checks performed
by the FeldmanVerifiermethod Verify() (from pkg/sharing/feldman.go) should be suf-
ficient to validate the ShamirShare: this method already checks that the ShamirShare’s ID
is not 0 and that the value is in the range 1 to q-1 (inclusive) where q is the order of the
curve group associated with the first point in the Commitments array.
– Finally, the number of received Round1Bcast structs and ShamirShares should be veri-
fied to be dp.feldman.limit.

• Signing, round 2: Each party must validate the Round1Bcast struct it receives from each
other party. Round1Bcast contains two curve points, Di and Ei, for the commitment shares.
– The points Di and Ei should be checked to be on the curve the recipient expects, i.e., the
receiving Signer’s curve (signer.curve), in the correct subgroup if the curve’s order
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is not prime, and not the group’s identity element (the point at infinity). Note that a
comment on line 53 of pkg/ted25519/frost/round2.go says Check Dj, Ej on the cu
rve, but this does not appear to happen.

The number of received Round1Bcast structs is already checked to be what the recipient
expects (signer.threshold).

• Signing, round 3: Each party must validate the Round2Bcast struct it receives from each
other party. Round2Bcast contains a scalar, zi, and a curve point, vki.
– The scalar zi should be checked to be within the range 0 to q-1 (inclusive) where q is the
order of the group of signer.Curve.

– The point vki should be checked to equal the other party’s public key share (gsi or Y_(i))
as computed during DKG. Without this check, verification of zi as a valid signature share
(step 7.b, line 90 of pkg/ted25519/frost/round3.go) is easily bypassed: a misbehaving
party could simply send the point at infinity for vki and di+ei*ri for zi: these values
would satisfy the equation zi*G = Ri + c*Li*vki, since the right-hand side would sim-
plify to Ri = D_i + r_i*E_i = di*G + r_i*e_i*G. However, including this signature
share in the final signature, which is the sum of the zis, would render it invalid since there
would be no contribution from the user’s share of the private key.
The point vki should be verified by computing it from the verifiers broadcast during
round 1 of DKG. This is described in the specification (draft-komlo-frost-00) as follows:
> 4. Each P_(i) calculates their public verification share Y_(i) =
> g^{s_(i)}, and the group's public key Y = PROD(A_(j0), j=1...n).
> Any participant can compute the public verification share of any
> other participant by calculating Y_(i) = PROD( (A_(jk))^((i^k mod
> q)), j=1...n, k=0...t-1)

Note that since vkimust always be computed locally by each party in order to verify each
other party’s signature share, it could be removed from Round2Bcast during signing.
Similarly, it does not need to be sent10 after round 2 of DKG. Instead, each user’s public
key share could be computed after DKG and passed to the new Signerwhen it is created.

The number of received Round2Bcast structs is already checked to equal what the recipient
expects (signer.threshold) on line 60 of pkg/ted25519/frost/round3.go.

Recommendation • Explicitly verify that all received scalars are in the expected range, that all curve points are
in the expected group, and that all lists have the expected length.

• Compute each party’s public key share (vki) from the verifiers broadcast by each party
in round 1 of DKG; remove it from the broadcast values in round 2 of signing.

Coinbase Category Cryptographic / Mathematical

10The Round2()method of DkgParticipant outputs a Round2Bcast struct containing the (joint) verification key and
the user’s verification key share. It is unclear how these values are used, as no code appears to process them.
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Finding Outdated Module Versions in go.sum, Outdated Minimum Go Version in go.mod

Risk Low Impact: Low, Exploitability: Low

Identifier NCC-E002578-001

Status Reported

Category Configuration

Location • kryptology/go.mod
• kryptology/go.sum

Impact Allowing outdated versions of Go or outdated dependencies may result in known vulnerabili-
ties being exposed in kryptology packages.

Description A library can be no more secure than its individual components and the toolchain used to
build it. Keeping kryptology’s dependency modules and Go itself up to date can help keep
the library secure by ensuring that all known issues in those components are fixed.

Dependency Modules
The module’s go.sum file lists dependency modules and their checksums. One of these de-
pendencies is deprecated and several are out of date:

• The indirect dependency golang/protobuf (whose dependency chain is btcsuite/btcd
> onsi/gomega > golang/protobuf) is deprecated.

• The direct dependencies x/crypto, x/tools, and btcsuite/btcd are out of date.
• Additionally, several indirect dependencies are out of date.

The output of go list -u -m all shows which modules can be updated by displaying the
latest available version in square brackets when it differs from the currently used version. The
dependency modules that can be updated are copied below:

• git.sr.ht/~sircmpwn/getopt v0.0.0-20191230200459-23622cc906b3 [v1.0.0]
• github.com/btcsuite/btcd v0.21.0-beta.0.20201114000516-e9c7a5ac6401 [v0.2
2.0-beta]

• github.com/creack/pty v1.1.9 [v1.1.17]
• github.com/decred/dcrd/lru v1.0.0 [v1.1.1]
• github.com/fsnotify/fsnotify v1.4.7 [v1.5.1]
• github.com/gogo/protobuf v1.3.1 [v1.3.2]
• github.com/golang/protobuf v1.2.0 [v1.5.2] (deprecated)
• github.com/jessevdk/go-flags v1.4.0 [v1.5.0]
• github.com/kisielk/errcheck v1.2.0 [v1.6.0]
• github.com/kkdai/bstream v0.0.0-20161212061736-f391b8402d23 [v1.0.0]
• github.com/kr/pretty v0.2.1 [v0.3.0]
• github.com/kr/pty v1.1.1 [v1.1.8]
• github.com/mimoo/StrobeGo v0.0.0-20181016162300-f8f6d4d2b643 [v0.0.0-2021
0601165009-122bf33a46e0]

• github.com/onsi/ginkgo v1.7.0 [v1.16.5]
• github.com/onsi/gomega v1.4.3 [v1.16.0]
• github.com/stretchr/objx v0.1.0 [v0.3.0]
• github.com/yuin/goldmark v1.3.5 [v1.4.2]
• golang.org/x/crypto v0.0.0-20210711020723-a769d52b0f97 [v0.0.0-2021092115
5107-089bfa567519]

• golang.org/x/mod v0.4.2 [v0.5.1]
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• golang.org/x/net v0.0.0-20210405180319-a5a99cb37ef4 [v0.0.0-2021110119342
0-4a448f8816b3]

• golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c [v0.0.0-2021110318473
4-ae416a5f93c7]

• golang.org/x/term v0.0.0-20201126162022-7de9c90e9dd1 [v0.0.0-202109272227
41-03fcf44c2211]

• golang.org/x/text v0.3.3 [v0.3.7]
• golang.org/x/tools v0.1.5 [v0.1.7]
• gopkg.in/yaml.v2 v2.2.1 [v2.4.0]

These modules can be upgraded (and the go.mod and go.sum files updated) with go get -
d -u all.

Go and Core Library
The kryptology module’s go.mod file specifies a minimum Go version of 1.15, while the
current latest major release11 is 1.17 from August 2021. Since version 1.15, there have been
several minor updates to Go’s runtime, compiler, linker, and modules from the core library
that are used in kryptology, such as crypto/hmac, crypto/elliptic, and crypto/rand.

Some specific recently fixed issues are the following:

• crypto/elliptic: incorrect operations on the P-224 curve,12 fixed in 1.15.7.
• crypto/hmac: undefined behavior leading to invalid outputs,13 fixed in 1.16.

Raising the minimum Go version in go.mod will ensure that the module is never built for an
older major version of Go that includes known vulnerabilities such as these.

Recommendation • Upgrade all direct and indirect dependencies with go get -d -u all.
• Regularly check for updated, deprecated, and retracted dependencies by examining the
output of go list -m -u all and then upgrading them with go get. Also run go mod t
idy to ensure that go.mod and go.sum are not tracking any unused dependencies.

• Update the minimum specified version of Go in go.mod to the latest version, 1.17, and
continue keeping the kryptology module’s minimum version up to date with the latest
major releases of Go. These are typically released every 6 months, so the next release is
expected around February 2022.

• Monitor the golang-announce mailing list14 for security-related updates to minor versions
of Go and update when necessary.

Coinbase Category Security / Implementation issues

11Go version history: https://golang.org/project#go1
12https://groups.google.com/g/golang-announce/c/mperVMGa98w
13https://golang.org/doc/go1.16#crypto/hmac
14golang-announce mailing list: https://groups.google.com/g/golang-announce
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Finding Generation of Random Scalars and Schnorr Challenges Uses Unnecessary Hash-
to-Field Operation

Risk Low Impact: High, Exploitability: Undetermined

Identifier NCC-E002578-003

Status Updated

Category Cryptography

Component curves, DKG, Signing

Location Random scalar generation:

• kryptology/pkg/core/curves/bls12381_curve.go (line 49)
• kryptology/pkg/core/curves/ed25519_curve.go (line 39)
• kryptology/pkg/core/curves/k256_curve.go (line 34)
• kryptology/pkg/core/curves/p256_curve.go (line 34)
• kryptology/pkg/core/curves/pallas_curve.go (line 219)

Schnorr challenges:

• kryptology/pkg/dkg/frost/dkg_round1.go (line 82)
• kryptology/pkg/dkg/frost/dkg_round1.go (line 68)
• kryptology/pkg/ted25519/round2.go (line 71)

Impact Unnecessary cryptographic operations reduce readability, make errors harder to identify, and
decrease performance.

Description Each of the various curves in kryptology/pkg/core/curves implements a Scalar interface (spec-
ified in kryptology/pkg/core/curves/curve.go) including a Random() function that takes as in-
put a reader (implementing the io.Reader interface) from which it reads some random
bytes. This Random() function is used in various places in the code in scope for this review,
listed in finding NCC-E002578-002 on page 5. The implementations of Random() follow the
same basic steps: a number of bytes are read from reader, the Hash() function is called on
them, and the return value is the output of Hash().

The Hash() function is also called in FROST DKG when each party computes the Schnorr
Proof of Knowledge (PoK) of its secret key share (round 1) and verifies each other party’s proof
(round 2). In signing, it is called when computing the binding values (which are called ρi in
the FROST eprint paper, r_(p) in draft-komlo-frost-00, rj in kryptology) in round 2. (There
is an additional call to hash function when computing the Schnorr challenge in round 3, but
this is not implemented using the scalar Hash() function.)

The curves’ implementations of Hash() also follow the same basic steps: the input bytes (and
a curve-specific domain separation string) are hashed with expandMsgXmd(), a big.Int is
created from the output, reduced modulo the group order, and used to instantiate a new
Scalar object, which is the output of Random().

Below is a representative example from k256_curve.go:

28 func (s *ScalarK256) Random(reader io.Reader) Scalar {
29 if reader == nil {
30 return nil
31 }
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32 var seed [64]byte
33 _, _ = reader.Read(seed[:])
34 return s.Hash(seed[:])
35 }
36

37 func (s *ScalarK256) Hash(bytes []byte) Scalar {
38 xmd, err := expandMsgXmd(sha256.New(), bytes,

[]byte("secp256k1_XMD:SHA-256_SSWU_RO_"), 48)
39 if err != nil {
40 return nil
41 }
42 v := new(big.Int).SetBytes(xmd)
43 return &ScalarK256{
44 value: v.Mod(v, btcec.S256().N),
45 }
46 }

In Hash(), the name expandMsgXmd appears to refer to the expand_message_xmd function
from the IETF draft “hash-to-curve” specification,15 in Section 5: Hashing to a finite field. The
expand_message_xmd function takes an arbitrary-length byte string and hashes it to a uni-
formly random byte string whose length is big enough (relative to the field size) to effectively
eliminate any bias from reducing it modulo the field size

Hashing to a finite field is an appropriate operation in contexts where there is a need for a
deterministicmapping from arbitrary-length inputs to uniformly random scalars. In the context
of the Random() function, however, it is unnecessary: there is no need for determinism since
the input to Hash() is freshly generated every time, and the input itself is already uniformly
random, since it was generated with the cryptographically secure pseudorandom number
generator crypto/rand.

Additionally, the added complexity may make it harder to identify errors. For example, as
mentioned in finding NCC-E002578-002 on page 5, the return values of reader.Read() are
not checked, so if this function fails, the Random() function will proceed to hash a seed of 64
zero bytes. Ultimately, the output of Random() will look random, but it will be a fixed string
every time the function is called. The tests in k256_curve_test.go, copied below, will not catch
such an error: they check only whether the output of Random() is a slice of zero bytes.

51 func TestScalarK256Random(t *testing.T) {
52 k256 := K256()
53 sc := k256.Scalar.Random(testRng())
54 s, ok := sc.(*ScalarK256)
55 assert.True(t, ok)
56 expected, _ := new(big.Int).SetString(

"2f71aaec5e14d747c72e46cdcaffffe6f542f38b3f0925469ceb24ac1c65885d",
16)

57 assert.Equal(t, s.value, expected)
58 // Try 10 random values
59 for i := 0; i < 10; i++ {
60 sc := k256.Scalar.Random(crand.Reader)
61 _, ok := sc.(*ScalarK256)
62 assert.True(t, ok)
63 assert.True(t, !sc.IsZero())
64 }
65 }

15https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-12
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The curves’ implementation of Random() can be simplified to generate a random scalar as
follows: continue using crypto/rand’s Read() function to read a number of random bytes
(say n), then reduce it modulo the group size (say, q). Here, care must be taken to ensure two
properties:

• First, no biases should be introduced in themodular reduction: each of the q possible values
should be output uniformly randomly. Avoiding this bias requires generating a greater
number n of random bytes. Specifically, to obtain a distribution modulo q that is indis-
tinguishable from uniform, the number of random bytes n should be at least (log2(q) +
128)/8 bytes. For group sizes q that are roughly 256 bits, this results in n ≥ 48 bytes. The
implementations of Random() for the curves mentioned in this finding already generate 64
random bytes, which is sufficient.

• Second, if constant-time code is desired, the time taken to do the modular reduction step
itself should depend only on the lengths of the operands (the random byte string and the
modulus), not their values. Constant-time functions on arbitrarily big integers are typically
constructed using as building blocks the low-level arithmetic operations available on a spe-
cific platform’s architecture, e.g. bitshifts, addition, andmultiplication of 32- or 64-bit words.
Note, however, that these building blocks themselvesmay not be consistently constant-time
across different CPUs,16 and that, in general, memory access patterns must also be taken
into account when writing constant-time code. Unfortunately, Go’s math/bigmodule does
not provide any constant-time functions for modular reduction. An additional issue is that
simply setting the big.Int instance value from the random bytes will imply allocating and
accessing an internal array of wordswhose length depends on themathematical value itself;
thus, if the highest-order random bytes are zero, then that array will be shorter, and the
memory access pattern will be different.17 Coinbase could consider evaluating available
third-party libraries, such as saferith,18 to see if they meet their requirements.

Note that if constant-time code is not required, it would also possible to use crypto/rand
’s Int() function19 with a parameter of max equal to the group order to generate a uniform
number in {0,. . .,q-1}. This function uses rejection sampling to ensure that it generates a
uniformly random value. However, it is not constant-time, not only because setting the value
implies a memory access pattern that depends on the mathematical value of the integer (and
not only the size of the source byte sequence), but also because the Cmp() function uses
data-dependent branching and notably will return much faster when comparing values with
different array lengths.20

In the context of FROST DKG and signing, the scalar Hash() function can also simply be
replaced by a call to cryptographic hash function that outputs sufficiently many bits (e.g., at
least 384 if hashing modulo a 256-bit value) and a modular reduction. (The inputs to the hash
functions used in DKG and signing are all public, so there is no need for these operations to
be constant-time.)

Finally, note that FROST requires different hash functions (H(), H1(), H2()) because the se-
curity proofs model them as independent random oracles. In practice, making them “distinct”
can be accomplished by using a standard cryptographic hash function, e.g. SHA-512, and
prepending context strings (e.g. “FROST-SHA512-H”).

Recommendation
16https://www.bearssl.org/ctmul.html#per-cpu-information
17https://cs.opensource.google/go/go/+/refs/tags/go1.17.3:src/math/big/nat.go;l=50
18https://github.com/cronokirby/saferith, https://eprint.iacr.org/2021/1121
19https://pkg.go.dev/crypto/rand#Int
20https://cs.opensource.google/go/go/+/refs/tags/go1.17.3:src/math/big/nat.go;l=153
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• Remove the calls to Hash() in the Random() functions listed in the “Location” field of this
finding. Generate random scalars by reducing the output of crypto/rand’s Readermodulo
the group size, taking care to ensure that the modular reduction is done in constant time
with respect to the lengths of the random output from Reader and the modulus.

• Remove the calls to scalars’ Hash() functions in the FROST functions listed in the “Location”
field of this finding. Generate hashes by using a cryptographic hash function of sufficient
output size, e.g. SHA-512, and reducing its output modulo the group size. Include con-
text strings in the hash input to ensure domain separation, thus correctly modelling the
independent random oracles in security proofs.

• Ensure that test cases are meaningful. For example, check that Random() does not output
the same value every time it is called.

Coinbase Category Cryptographic / Mathematical
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Finding Code is Not Constant-Time

Risk Low Impact: High, Exploitability: Undetermined

Identifier NCC-E002578-005

Status Reported

Category Cryptography

Location throughout

Impact Information about secret values (such as keys and nonces) may leak through timing side-
channels, possibility enabling signature forgery or impersonation attacks.

Description A commonly desired property of cryptographic code that operates on secret values is that
it is constant-time: for all inputs of a certain length, the sequence of operations performed
on that input (including reading particular memory addresses) depends only on the input’s
length, not its value. Constant-time code makes attacks on timing-based side channels im-
possible. These side channels can occur at various levels, ranging from microarchitectural
(e.g. when data does or does not need to be loaded into a CPU cache), to implementation
(e.g. exponentiation using the square-and-multiply algorithm), to protocol (e.g. returning an
error instead of continuing). For example, timing information could be measured by another
process running on the same hardware, or it could be measured remotely over a network.

For code to be constant-time, there must be no memory accesses at secret-dependent loca-
tions, nor any conditional jumps where the condition depends on the secret value. Several
properties of the code in kryptologymake it non-constant time and are detailed in this find-
ing: (i) use of math/big, (ii) incorrect use of crypto/subtle, (iii) secret-dependent branching,
(iv) data-dependent function API conformity, (v) short-circuit optimizations, and (vi) potential
architecture-dependent optimizations. Additionally, (vii) some of kryptology’s dependencies
are non-constant time.

(i) Use of math/big
The math/big package fromGo’s standard library is used extensively throughout kryptology
. This package is meant to provide a general-purpose multi-precision library; its design is not
meant to provide security properties such as constant-time execution or data-independent
memory accesses.

For instance, consider the variable-length big integer type big.Int, used in kryptology to
model coordinates of elliptic curve points, elliptic curve parameters, hash values, constants
(0, 1, 2), etc. As the following code excerpts show, the big.Int type is a struct with two
members: a boolean value (neg) representing whether the integer is positive or negative,
and a (variable-length) slice (nat) of 32- or 64-bit words representing the absolute value of
the integer.

25 type Int struct {
26 neg bool // sign
27 abs nat // absolute value of the integer
28 }

Listing 1: math/big/int.go
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23 // An unsigned integer x of the form
24 //
25 // x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
26 //
27 // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
28 // with the digits x[i] as the slice elements.
29 //
30 // A number is normalized if the slice contains no leading 0 digits.
31 // During arithmetic operations, denormalized values may occur but are
32 // always normalized before returning the final result. The normalized
33 // representation of 0 is the empty or nil slice (length = 0).
34 //
35 type nat []Word

Listing 2: math/big/nat.go

15 // A Word represents a single digit of a multi-precision unsigned integer.
16 type Word uint
17

18 const (
19 _S = _W / 8 // word size in bytes
20

21 _W = bits.UintSize // word size in bits
22 _B = 1 << _W // digit base
23 _M = _B - 1 // digit mask
24 )

Listing 3: math/bits/arith.go

11 const uintSize = 32 << (^uint(0) >> 63) // 32 or 64
12

13 // UintSize is the size of a uint in bits.
14 const UintSize = uintSize

Listing 4: math/bits/bits.go

In particular, the big.Int type does not have any notion of what length a value should appear
to have, and there is no interface or means to force the library to allocate a certain number of
words to a big.Int. Even when setting a big.Int’s value with SetBytes(), the value will be
normalized and any leading zero words will be removed. This normalization entirely precludes
writing constant-time code using big.Ints since the size of memory allocated to a big.Int
will depend on its value, violating the requirement of constant-time code that any memory
accesses are independent of secret values.

For example, suppose the upper 4 bytes of a user’s secret value (e.g., a secret key or nonce) are
zero— for a 256-bit value generated uniformly at random, this happenswith probability about
1 in 4 billion, which may be frequent enough in some settings. When creating a big.Int and
setting it to have this value, Go will allocate seven 32-bit words, not eight, on a 32-bit system.
The normalization means that even if the big.Int was initialized by calling SetBytes() on
a 32-byte array with the first 4 bytes equal to 0, the internal representation of the value will
always exclude the high-order zero word. Since the size of a big.Int in memory depends on
its value, any functions involving it cannot be constant-time.

Additionally, the math/big package provides various functions operating on big.Ints that
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are themselves not constant-time. For example, some of the big.Int functions used in kryp
tology (primarily concentrated in pkg/core/curves) are Add(), Sub(), Mul(), Mod(), ModInve
rse(), Exp(), ModSqrt(), Neg(), Cmp(), and Rsh(). These functions provide no guarantees
about the sequence of operations or memory accesses they perform.

There have been discussions about modifying the math/big package to be constant-time
since 2017,21 however, the proposal is still classified as “Incoming” (not yet “Accept” or “Likely
Accept”) among all of the Go language’s current proposals.22 Coinbase could consider eval-
uating available third-party libraries, such as saferith,23 which is meant to provide a similar
API to math/big, to see if they meet their requirements.

(ii) Incorrect Use of subtle
The crypto/subtle package in Go’s standard library provides a few utility functions for com-
paring bytes, byte slices, and integers. The package’s documentation states that the functions
it provides “require careful thought to use correctly.” These functions were written to run in
constant time: the sequence of steps they take and the memory accesses they make depend
only on the size of the arguments (e.g. the lengths of the byte slices), not their values or
contents. For instance, consider the function subtle.ConstantTimeCompare(), copied here
for reference.

9 // ConstantTimeCompare returns 1 if the two slices, x and y, have equal contents
10 // and 0 otherwise. The time taken is a function of the length of the slices and
11 // is independent of the contents.
12 func ConstantTimeCompare(x, y []byte) int {
13 if len(x) != len(y) {
14 return 0
15 }
16

17 var v byte
18

19 for i := 0; i < len(x); i++ {
20 v |= x[i] ^ y[i]
21 }
22

23 return ConstantTimeByteEq(v, 0)
24 }

Listing 5: crypto/subtle/constant_time.go

It takes as input two byte slices x and y, and outputs 1 iff they have equal contents, otherwise
it outputs 0. Given two pairs of inputs (x1,y1) and (x2,y2), the constant-time guarantee is the
following: if the lengths of x1 and x2 are equal, and the lengths of y1 and y2 are equal, then
the function will perform the exact same sequence of operations when running on (x1,y1)
as it will perform when running on (x2,y2). As an example, to compare two 256-bit values in
constant time, two byte slices of length 32 must be passed to the function.

There are several instances in kryptologywhere this padding to fixed-length byte slices does
not occur, and thus using ConstantTimeCompare() does not provide the desired constant-
time guarantees.

• First, whenever Bytes() is used to convert a big.Int to a byte slice, its length will depend

21https://github.com/golang/go/issues/20654
22https://github.com/golang/go/projects/1
23https://github.com/cronokirby/saferith, https://eprint.iacr.org/2021/1121
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on whether the higher-order bytes are zero, as the following code excerpt shows.
449 // Bytes returns the absolute value of x as a big-endian byte slice.
450 //
451 // To use a fixed length slice, or a preallocated one, use FillBytes.
452 func (x *Int) Bytes() []byte {
453 buf := make([]byte, len(x.abs)*_S)
454 return buf[x.abs.bytes(buf):]
455 }

Listing 6: math/big/int.go

The big.Int Bytes() function is used to generate the arguments to ConstantTimeCompa
re() in the following locations:
– function ConstantTimeEqByte() (pkg/core/mod.go, line 44)
– functions IsZero() and IsOne() (pkg/core/curves/bls12381_curve.go, lines 79 and 83)
– function Set() (pkg/core/curves/ed25519_curve.go, lines 490 and 491)
– functions IsZero(), IsOne(), and Set() (pkg/core/curves/k256_curve.go, lines 61, 65,
419, and 420)

– functions IsZero(), IsOne(), and Set() (pkg/core/curves/p256_curve.go, lines 61, 65,
418, and 419)

– function Set() (pkg/core/curves/pallas_curve.go, lines 564 and 565)
In all of these instances, the big.Ints should be serialized into a pre-allocated array of the
correct size (e.g. the group size or hash size) using FillBytes()24 instead of Bytes().

Additionally, there are other instances where functions from crypto.subtle are used in ways
that will not give the desired behavior.

• ConstantTimeCopy()25 takes as input a bit and two byte slices. If the slices do not have
equal length, the function panics. Therefore, this function should not be usedwith big.Ints
converted to variable-length byte slices using Bytes(). This pattern occurs in the following
locations:
– function ToAffineCompressed() (pkg/core/curves/pallas_curve.go, line 894)
Again, in this instance, any big.Ints should be serialized into a pre-allocated array of the
correct size using FillBytes() instead of Bytes().

(iii) Secret-Dependent Branching
For code to be constant-time, theremust be no jumps or branching (with if-else, switch, br
eak, goto etc.) depending on any secret value. Different branchesmay take different amounts
of time to execute, and this difference may be exacerbated by CPU optimizations such as
branch prediction. In general, the pattern if (v) { return x } else { return y } can
be handled in constant-time with the crypto/subtle function ConstantTimeSelect().26
The ConstantTimeCopy() function may also be useful in replacing some of these branches.

Numerous examples of such secret-dependent branching were identified throughout the
code: branching based on the result of comparisons involving big.Int values, int values,
results of other non-constant time computations, etc. Some examples are identified in the
following list. It is not exhaustive, but instead meant to illustrate the patterns that should be
replaced in the code.

• The function ConstantTimeEqByte() (pkg/core/mod.go, line 35), which checks whether
two big.Ints represent the same integer, is not constant-time (for reasons in addition to

24https://pkg.go.dev/math/big#Int.FillBytes
25https://pkg.go.dev/crypto/subtle#ConstantTimeCopy
26https://pkg.go.dev/crypto/subtle#ConstantTimeSelect
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its use of big.Ints): it uses secret-dependent branching (the if-else statements on lines
44 and 52). This may leak whether the two integers have the same absolute value or the
same sign.

35 func ConstantTimeEqByte(a, b *big.Int) byte {
36 if a == nil && a == b {
37 return 1
38 }
39 if a == nil || b == nil {
40 return 0
41 }
42 // Determine if the byte representations are the same
43 var sameBytes byte
44 if subtle.ConstantTimeCompare(a.Bytes(), b.Bytes()) == 1 {
45 sameBytes = 1
46 } else {
47 sameBytes = 0
48 }
49

50 // Determine if the signs are the same
51 var sameSign byte
52 if a.Sign() == b.Sign() {
53 sameSign = 1
54 } else {
55 sameSign = 0
56 }
57

58 // Report the conjunction
59 return sameBytes & sameSign
60 }

• The Ep function Add() (pkg/core/curves/pallas_curve.go, line 772), which adds two points
in projective coordinates, is not constant-time: it contains several occurrences of secret-
dependent branching. These may leak, via timing side-channels, whether either of the
operands is the identity, whether the two operands are equal, or whether they are inverses
of each other.

772 func (p *Ep) Add(lhs *Ep, rhs *Ep) *Ep {
773 if lhs.IsIdentity() {
774 return p.Set(rhs)
775 }
776 if rhs.IsIdentity() {
777 return p.Set(lhs)
778 }
779 z1z1 := new(fp.Fp).Square(lhs.z)
780 z2z2 := new(fp.Fp).Square(rhs.z)
781 u1 := new(fp.Fp).Mul(lhs.x, z2z2)
782 u2 := new(fp.Fp).Mul(rhs.x, z1z1)
783 s1 := new(fp.Fp).Mul(lhs.y, z2z2)
784 s1.Mul(s1, rhs.z)
785 s2 := new(fp.Fp).Mul(rhs.y, z1z1)
786 s2.Mul(s2, lhs.z)
787

788 if u1.Equal(u2) {
789 if s1.Equal(s2) {
790 return p.Double(lhs)
791 } else {
792 return p.Identity()
793 }
794 } else { // [snip...]

25 | Coinbase, Inc. FROST Implementation Security Assessment Coinbase, Inc. / NCC Group Confidential



• The ScalarPallas function Div() (pkg/core/curves/pallas_curve.go, line 356) is not constant-
time. The if statement on line 360 contains a check that, if triggered, makes the function
return more quickly and without reading the ScalarPallas value s. This may leak whether
the argument to Div was a scalar equal to 0 modulo the group order.

356 func (s *ScalarPallas) Div(rhs Scalar) Scalar {
357 r, ok := rhs.(*ScalarPallas)
358 if ok {
359 v, wasInverted := new(fq.Fq).Invert(r.value)
360 if !wasInverted {
361 return nil
362 }
363 v.Mul(v, s.value)
364 return &ScalarPallas{value: v}
365 } else {
366 return nil
367 }
368 }

(iv) Data-dependent Function API Conformity
For code to be constant-time, there must be no memory accesses made that depend on the
values of potentially secret data. This principle applies to function APIs and is one of the
reasons why any function that inputs or outputs a big.Int cannot be constant-time: when
reading or writing a big.Int, the memory locations accessed depend on the integer’s size,
and its size depends on its value. More generally, any function that returns a value whose
size depends on a potentially secret input is not constant-time. In particular, if a function
returns nil in certain special cases, but returns a non-nil pointer to additional memory in
other cases, this may leak through a timing side-channel.

For example, this pattern was observed in kryptology:

• The ScalarPallas function Div() (pkg/core/curves/pallas_curve.go, copied in the previous
section) returns nil (line 361) if the scalar argument rhs had no inverse, while it allocates
a scalar and returns a pointer to it (line 364) otherwise. This could leak whether the scalar
rhswas 0. This Div() function should instead return (a fixed-size representation of) 0, such
as what is returned by the Fq function Invert().

(v) Short-Circuit Optimizations
Writing constant-time code is made more difficult by certain common optimizations built into
Go. The Go Programming Language Specification27 states:

Logical operators apply to boolean values and yield a result of the same type as the
operands. The right operand is evaluated conditionally.

Conditionally evaluating the right operand of a logical operator is known as short-circuiting,
which allows for faster computation of the expression. Short-circuiting allows prematurely
evaluating a logical AND (&&) expression to FALSE as soon as its first argument is computed to
be FALSE, or prematurely evaluating a logical OR (||) expression to TRUE as soon as its first
argument is TRUE. This short-circuiting results in shorter execution time and potentially fewer
steps based on the first term of the logical operator.

A common technique for preventing such short-circuiting is using bitwise operators (& and |
) on integer types instead of logical operators (&& and ||) on booleans. One way to ensure

27https://golang.org/ref/spec#Logical_operators
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these operators are not used is to remove all booleans (bool) and use integer types instead,
with 0 for false and 1 for true. The crypto/subtle functions ConstantTimeCopy() and Con
stantTimeSelect() are made to use on such integers representing boolean values.

Short-circuiting may affect the following functions in kryptology.

• The Ep (Pasta point) Equal() function (pkg/core/curves/pallas_curve.go, line 847), which
checks whether two points are equal, could return FALSE as soon as lhs.x.Equal(rhs.
x) is computed to be FALSE. This may leak whether two points have the same (affine) x-
coordinate, i.e., whether the two points are inverses or are identical.

356 func (p *Ep) Equal(other *Ep) bool {
357 // warning: requires converting both to affine
358 // could save slightly by modifying one so that its z-value equals the other
359 // this would save one inversion and a handful of multiplications
360 // but this is more subtle and error-

prone, so going to just convert both to affine.
361 lhs := new(Ep).Set(p)
362 rhs := new(Ep).Set(other)
363 lhs.toAffine()
364 rhs.toAffine()
365 return lhs.x.Equal(rhs.x) && lhs.y.Equal(rhs.y)
366 }

• The PallasCurve Add() function, which adds two points specified by their big.Int coor-
dinates, may leak whether either of the operands is the identity.
Consider using a complete formula for elliptic curve with no branches instead. The point
addition formulas for prime-order short Weierstrass curves in “Complete addition formulas
for prime order elliptic curves” by Renes, Costello, and Batina28 would be suitable.

96 func (curve *PallasCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
97 p := new(Ep)
98 p.x = new(fp.Fp).SetBigInt(x1)
99 p.y = new(fp.Fp).SetBigInt(y1)
100 p.z = new(fp.Fp).SetOne()
101 if p.x.IsZero() && p.y.IsZero() {
102 p.z.SetZero()
103 }
104

105 q := new(Ep)
106 q.x = new(fp.Fp).SetBigInt(x2)
107 q.y = new(fp.Fp).SetBigInt(y2)
108 q.z = new(fp.Fp).SetOne()
109 if q.x.IsZero() && q.y.IsZero() {
110 q.z.SetZero()
111 }
112 p.Add(p, q)
113 p.toAffine()
114 return p.x.BigInt(), p.y.BigInt()
115 }

• The EcPoint function IsValid() (pkg/core/curves/ec_point.go, line 103), which checks if a
point is on a curve, may leak whether the given point is on the curve, but not equal to the
identity.

103 func (a EcPoint) IsValid() bool {
104 return a.IsOnCurve() || a.IsIdentity()

28https://eprint.iacr.org/2015/1060
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105 }
106

(vi) Architecture-Dependent Optimizations
Constant-time code is often written for specific platform architectures, e.g. 32- or 64-bit. What
is constant-time on one platform may not be constant-time on another.

This may affect kryptology in the following locations.

• The implementation of the Pasta curves in (pkg/core/curves/native/pasta) includes the types
Fp and Fq for field elements modulo the Pallas and Vesta curve orders respectively. These
types are implemented as length-4 arrays of uint64s. Operations on uint64s that are
constant-time on a 64-bit system may no longer be constant-time if the code were to be
compiled on a 32-bit system. For example, consider the Pasta scalar Equal() function (pkg/
core/curves/native/pasta/fp/fp.go, line 57), which checks whether two scalars are equal.

57 // Equal returns true if fp == rhs
58 func (fp *Fp) Equal(rhs *Fp) bool {
59 t := fp[0] ^ rhs[0]
60 t |= fp[1] ^ rhs[1]
61 t |= fp[2] ^ rhs[2]
62 t |= fp[3] ^ rhs[3]
63 return t == 0
64 }

When this code is compiled on a 32-bit system, the check of whether the uint64 value t
equals 0will be converted into an operation on two uint32s, whichmust both be compared
against 0. If the first of these comparisons returns FALSE, then the function may return
sooner. To prevent this potential timing side channel, consider folding the 64-bit result into
two 32-bit halves and ORing them before checking for equality with 0: return uint(x |
(x >> 32)) == 0.

(vii) Non-Constant Time Dependencies
Many of the supported curves in kryptology use third-party backends for elliptic curve com-
putations, some of which claim to be constant-time and some of which make no claims.

Some general observations apply to these libraries:

• Using big.Int to model scalars or point coordinates is not constant-time. Any function
that accepts a big.Int as input or output, or uses a big.Int for intermediate values in a
computation is not constant-time.

• Using look-up tables to speed up computations is not constant-time if the index of the look-
up (and therefore the resulting memory access read) is secret-dependent.

This information is summarized here.

• BLS12-381: The backend is proprietary (github.cbhq.net/c3/bls12-381); its constant-time
properties are unknown.

• Ed25519: Multiple backends are used:
– filippo.io/edwards25519: appears to be constant-time.
– filippo.io/edwards25519/field: appears to be constant-time.
– github.com/bwesterb/go-ristretto: partly constant-time due to Scalar functions BigI
nt() and SetBigInt(), which convert to/from big.Ints. However, these functions do
not appear to be used in kryptology.

– github.com/bwesterb/go-ristretto/edwards25519 (as “ed”): partly constant-time due to
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FieldElement functions BigInt(), SetBigInt(), and String(), which all convert to/
from big.Ints. These conversion functions are used in kryptology, e.g. in the PointEd
25519 function Set(), which calls new(ed.FieldElement).SetBigInt(x) (ed25519_curve.go,
line 495).

• K256 (secp256k1): The backend is github.com/btcsuite/btcd/btcec, which is not constant-
time.
– It extensively uses big.Ints for scalars, point coordinates, and intermediate values dur-
ing computations.

– Its ScalarMult() function29 performs some optimizations on the scalar (via the splitK
() function) that depend on its value.

– Its ScalarBaseMult() function30 uses a look-up table of pre-computed values and the
access to this table depend on the value of the scalar.

Coinbase could consider using Go bindings31 to the (C) bitcoin-core secp256k1 library.32

• P256 (secp256r1): The backend is crypto/elliptic, which claims in p256.go to be constant-
time,33 but is only partly constant-time.
– The p256GetScalar() function uses math/big’s comparison andmodular reduction func-
tions on a big.Int representing the scalar.34 This function is used in ScalarBaseMult()
and ScalarMult(), the two scalar multiplication functions provided for P256.

– The p256ToBig() function uses math/big’s multiplication and modular reduction func-
tions on a big.Int representing the scalar.35

– The p256FromBig() function, which converts a scalar to Montgomery form, uses math/
big’s modular reduction function on the scalar.36

– Many functions provided by crypto/elliptic do not yet have constant-time versions
when operating on the curve P256, e.g. IsOnCurve(), Add(), and Double(). While the
main body of the scalar multiplication functions are constant-time, they can take as input
or output big.Ints representing scalars or point coordinates. (Note that this library
uses a look-up table of pre-computed values for scalar multiplications of the base point.
However, its accesses to this table do not depend on the scalar’s value, so this is constant-
time.)

• Pallas/Vesta: The backend is proprietary, but included in kryptology (in core/curves/native/
pasta). It is partly constant-time. While the main bodies of most functions (with some
exceptions, as covered by the patterns explained in this finding) are constant-time, they
often take as input or output big.Ints representing scalars or point coordinates.
– Various functions may leak when a coordinate is 0 or when two coordinates are equal.
– Certain functions use big.Ints for potentially secret-dependent intermediate values, e.g.
sumOfProductsPippengerPallas() (pkg/core/curves/pallas/pallas_curve.go, line 1037,
copied below) creates big.Ints from the (also big.Int) scalars it takes as input (line
1037). Additionally, the result of this computation, index, which is based on a potentially
secret scalar, is used to conditionally perform several memory accesses and scalar ad-
ditions. To make this algorithm constant-time, the memory accesses and addition must
always be performed (and the intermediate results always set with bitwise operations).

29https://github.com/btcsuite/btcd/blob/master/btcec/btcec.go#L765, splitK() on line 771
30https://github.com/btcsuite/btcd/blob/master/btcec/btcec.go#L870, secret-dependent look-ups on line 883
31https://github.com/btccom/secp256k1-go
32https://github.com/bitcoin-core/secp256k1
33https://github.com/golang/go/blob/master/src/crypto/elliptic/p256.go#L9
34https://github.com/golang/go/blob/master/src/crypto/elliptic/p256.go#L54--L55
35https://github.com/golang/go/blob/master/src/crypto/elliptic/p256.go#L1192-L1193
36https://github.com/golang/go/blob/master/src/crypto/elliptic/p256.go#L1152-L1153
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1017 func sumOfProductsPippengerPallas(points []*Ep, scalars []*big.Int) *Ep {
1018 if len(points) != len(scalars) {
1019 return nil
1020 }
1021

1022 const w = 6
1023

1024 bucketSize := (1 << w) - 1
1025 windows := make([]*Ep, 255/w+1)
1026 for i := range windows {
1027 windows[i] = new(Ep).Identity()
1028 }
1029 bucket := make([]*Ep, bucketSize)
1030

1031 for j := 0; j < len(windows); j++ {
1032 for i := 0; i < bucketSize; i++ {
1033 bucket[i] = new(Ep).Identity()
1034 }
1035

1036 for i := 0; i < len(scalars); i++ {
1037 index := bucketSize & int(new(big.Int).Rsh(scalars[i], uint(w*j))

.Int64())
1038 if index != 0 {
1039 bucket[index-1].Add(bucket[index-1], points[i])
1040 }
1041 } // [snip...]

Recommendation First, consider documenting the code to identify which values are considered secret (or not),
and which functions are guaranteed to run in constant time (or variable time). Then, for all
code that may be run on secret values and should be constant-time, address the points from
this finding:

• Do not use the big.Int type provided by the math/big package. Consider using an alter-
native library designed to be constant-time, and/or use curve-specific constant-time imple-
mentations for each supported curve group.

• Ensure that the lengths of arguments to comparison functions from the crypto/subtle
package do not depend on their values (i.e. that no leading zero bytes are removed).

• Remove any instances of secret-dependent branching; use the crypto/subtle functions
ConstantTimeCopy() and ConstantTimeSelect() where appropriate.

• Ensure that functions’ APIs are used uniformly to avoid leaking information about the return
values (e.g., by sometimes returning nil instead of allocating an array).

• Avoid using boolean types and logical operators, which may result in short-circuit optimiza-
tions; use bitwise functions on integer types instead.

• Be aware of differences due to code compilation on different architectures.
• Ensure that no non-constant time functions are used from dependency packages and/or
consider replacing non-constant time dependency packages with suitable replacements.

Coinbase Category Security / Implementation issues
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Finding Implementation Does Not Identify Misbehaving Participants

Risk Low Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-E002578-006

Status Reported

Category Cryptography

Component DKG, Signing

Location • kryptology/pkg/dkg/frost/dkg_round2.go
• kryptology/pkg/ted25519/frost/round2.go
• kryptology/pkg/ted25519/frost/round3.go

Impact Misbehaving participants can corrupt theDKG and signing protocols anonymously, whichmay
lead to an indefinite denial of service since the caller is not given any information about which
participants to eject.

Description The FROST protocol is a non-robust signature scheme, designed to abort upon detection of
misbehaving participants. The FROST eprint paper37 states:

FROST achieves its efficiency improvements in part by allowing the protocol to abort
in the presence of a misbehaving participant (who is then identified and excluded
from future operations)

In the frost package in kryptology, when validation of another party’s values fails during
DKG or signing, no information about the identity of the misbehaving participant is supplied
as output, making it impossible to eject badly behaving participants in the future. The error
messages included in the list below refer only to the existing checks in the code. Note that
additional required checks (see finding NCC-E002578-010 on page 13) should also provide
such information.

• DKG, round 2: Each party verifies the Round1Bcast values (verifiers, wi, ci) and Shamir
share (fji) it received from each other party. The following two checks are included in
kryptology’s implementation:
– First, the party verifies the other party’s Schnorr Proof of Knowledge (PoK) of its share of
the secret key. This is done by checking that the received hash value cj equals the locally
computed hash of id, ctx, Aj0, and prod. In terms of notation from FROST’s pseudocode,
this check corresponds to

cj
?
= H(j, CTX,Aj,0, wj ·G+ (−cj) ·Aj,0).

This equation is checked on line 70 of pkg/dkg/frost/dkg_round2.go:
70 if cj.Cmp(bcast[id].ci) != 0 {
71 return nil, fmt.Errorf("Hash check fails")
72 }

There is no identification of the responsible participant (id), only an error message that
something went wrong with the comparison.

– Second, the party verifies the correctness of their assigned Shamir share using Feldman
verifiable secret sharing’s verification algorithm. This is done on line 76 of pkg/dkg/frost/
dkg_round2.go:

37https://eprint.iacr.org/2020/852
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74 // Step 5 - FeldmanVerify
75 fji := p2psend[id]
76 if err = bcast[id].verifiers.Verify(fji); err != nil {
77 return nil, err
78 }

Again, if this verification fails, the protocol simply returns nil without identifying the
misbehaving participant, id.

• Signing, round 2: Each party verifies that it received non-nil Round1Bcast values (Di, Ei)
from each other party.

53 // Step 2 - Check Dj, Ej on the curve and Store round2Input
54 for _, input := range round2Input {
55 if input == nil || input.Di == nil || input.Ei == nil {
56 return nil, fmt.Errorf("some round2Input is nil")
57 }
58 }

Again, there is no identification of the participant (id) who broadcasted invalid commit-
ments. Also note that, contrary to the comment, there is no check that the points are on
the curve. (This is addressed in finding NCC-E002578-010 on page 13.)

• Signing, round 3: Each party verifies that the Round2Bcast values (zi, vki) it received from
each other party represent a valid share of the signature. This is done on line 90 of pkg/
ted25519/frost/round3.go, where, again, the returned error message does not highlight
which user submitted an invalid response.

89 // Check equation
90 if !zjG.Equal(right) {
91 return nil, fmt.Errorf("zjG != right")
92 }

In all of these instances, it is recommended to include the identity of the party responsible for
the error in the error message returned to the calling function. It is also important to check
all parties’ values before returning an error, otherwise, only the first misbehaving party will be
identified.

Recommendation • Ensure that the DKG and signing protocol APIs return informative error messages when
failing due to another party’s inputs, so that the misbehaving participant(s) can be ejected
or excluded from future protocol instances.
– The additional required checks described in finding NCC-E002578-010 on page 13 should
also return error messages identifying misbehaving parties.

• Ensure that all misbehaving parties, not just the first, are identified. Do not immediately
return an error after the first misbehaving party is detected; continue processing other
parties’ messages and return a list of the identities of misbehaving parties.

Coinbase Category Security / Implementation issues
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Finding Minor Deviations from FROST Specification

Risk Low Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-E002578-009

Status Updated

Category Configuration

Component Signing

Location • kryptology/pkg/ted25519/frost/round2.go
• kryptology/pkg/ted25519/frost/challenge_derive.go

Impact Deviating from the FROST specification may cause compatibility issues with other implemen-
tations. In the context of blockchains, if one implementation considers a signature valid and
another implementation considers it invalid, this may result in a fork.

Description Two small deviations were noted from the FROST specification in CFRG Internet Draft draft-
komlo-frost-00,38 apart from the intentionally made changes around the removal of the Signa-
ture Aggregator role. Both differences relate to the inputs of hash functions: in one instance,
kryptology includes additional input, while in the other, kryptology omits some input. In
general, including more input when hashing a bytestring improves security: it makes the
hash value more specific, which may rule out classes of attacks that rely on the re-use of
ambiguous hash values. (See also the note about including context strings in hash inputs
to ensure domain separation in finding NCC-E002578-003 on page 17.) In this finding, the
differences are pointed out simply for awareness about potential incompatibilities with other
implementations of draft-komlo-frost-00. (Note that this specification is no longer the most
recent one; see finding NCC-E002578-007 on page 36.)

First, in kryptology, the challenge c computed during the signing protocol additionally in-
cludes the public key: it is computed as c = H(R, Y,m). This is done in the DeriveChallen
ge() function (pkg/ted25519/frost/challenge_derive.go):

20 func (ed Ed25519ChallengeDeriver) DeriveChallenge(msg []byte, pubKey
curves.Point, r curves.Point) (curves.Scalar, error) {

21 h := sha512.New()
22 _, _ = h.Write(r.ToAffineCompressed())
23 _, _ = h.Write(pubKey.ToAffineCompressed())
24 _, _ = h.Write(msg)
25 return new(curves.ScalarEd25519).SetBytesWide(h.Sum(nil))
26 }

In draft-komlo-frost-00, the public key is not included and the arguments are in a different
order:

> 4. Each P_(i) then computes the set of binding values r_(p) =
> H_(1)(p, m, B), p in S. Each P_(i) then derives the group
> commitment R = PROD(D_(pj) * (E_(pj))^{r_(p)}, p in S), and the
> challenge c = H_(2)(m, R).

Second, also in the signing protocol, each party computes a binding value ρi = H(i,m,B)

for each other party i in the set of signers S, whereB = ⟨(i,Di, Ei)⟩i∈S . The relevant excerpt
from draft-komlo-frost-00 is:
38https://www.ietf.org/archive/id/draft-komlo-frost-00.txt
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> selected for use for this signing operation. Let B = < (i, D_(ij),
> E_(ij)) for i in S> denote the ordered list of participant indices
> corresponding to each participant P_(i), and L_(i) be the set of
> available commitment values for P_(i) that were published during the
> Preprocess stage. Each identifier i is coupled with the jth
> commitments (D_(ij), E_(ij)) published by P_(i) that will be used for
> this particular signing operation. Let H_(1), H_(2) be hash
> functions whose outputs are in Z_(q)^(*).
>
> 1. SA begins by fetching the next available commitment for each
> participant P_(i) in S from L_(i) and constructs B.
>
> 2. For each i in S, SA sends P_(i) the tuple (m, B).
>
> 3. After receiving (m, B), each P_(i) first validates the message m,
> and then checks D_(p j), E_(p j) in G^(*) for each commitment in
> B, aborting if either check fails.
>
> 4. Each P_(i) then computes the set of binding values r_(p) =
> H_(1)(p, m, B), p in S. Each P_(i) then derives the group
> commitment R = PROD(D_(pj) * (E_(pj))^{r_(p)}, p in S), and the
> challenge c = H_(2)(m, R).

This is done on line 68 of pkg/ted25519/frost/round2.go with the concatHashArray() func-
tion:

66 for id, data := range round2Input {
67 // Construct the blob (j, m, {Dj, Ej})
68 blob := concatHashArray(id, msg, round2Input, signer.cosigners)

The concatHashArray() function is defined as follows, in the same file:

129 func concatHashArray(id uint32, msg []byte, round2Input map[uint32]*Round1Bcast,
cosigners []uint32) []byte {

130 var blob []byte
131 // Append identity id
132 blob = append(blob, byte(id))
133

134 // Append message msg
135 blob = append(blob, msg...)
136

137 // Append (Dj, Ej) for all j in [1...t]
138 for i := 0; i < len(cosigners); i++ {
139 id := cosigners[i]
140 bytesDi := round2Input[id].Di.ToAffineCompressed()
141 bytesEi := round2Input[id].Ei.ToAffineCompressed()
142 blob = append(blob, bytesDi...)
143 blob = append(blob, bytesEi...)
144 }
145 return blob
146 }

The two highlighted lines show that onlyDi (bytesDi) andEi (bytesEi) are included, not the
identifier i (id) of the party. To comply with the FROST specification, each party’s identifier
should also be included.

Recommendation If compatibility with other implementations of draft-komlo-frost-00 is desired, then make the
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following changes:

• In the DeriveChallenge() function in pkg/ted25519/frost/challenge_derive.go, remove
the group public key from the bytestring to be hashed.

• In the concatHashArray() function in pkg/ted25519/frost/round2.go, include each party’s
ID in the bytestring to be hashed.

Coinbase Category Cryptographic / Mathematical
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Finding FROST Implementation Does Not Follow Most Recent Specification

Risk Informational Impact: Undetermined, Exploitability: Undetermined

Identifier NCC-E002578-007

Status New

Category Cryptography

Component FROST

Location • kryptology/pkg/dkg/frost/
• kryptology/pkg/ted25519/frost/

Impact Basing the FROST implementation on an expired specification (draft-irtf-cfrg-frost-00) may
prevent it from benefiting from security enhancements in later drafts.

Description FROST is a relatively new protocol: the paper by Komlo and Goldberg that introduced it was
first published on eprint39 in July 2020. The kryptology implementation of FROST is based on
the CFRG (Crypto Forum Research Group) Internet Draft draft-komlo-frost-0040 from August
2020. When the CFRG adopted it as a work item, the draft expired and was replaced by
draft-irtf-cfrg-frost-0041 in February 2021. Drafts under consideration to be adopted as RFCs
(Request For Comments) are updated at least once every 6 months; the FROST draft was
updated to draft-irtf-cfrg-frost-0142 in August 2021. The latest available version of the paper
on eprint43 (which was published in the proceedings of SAC 2020) is from December 2020.

Later versions of the FROST specification may introduce security enhancements, therefore, it
is recommended to keep the implementation up to date with respect to the latest Internet
Draft. Currently, there appear to be only a few small differences between the FROST imple-
mentation in kryptology and the latest available FROST paper and specification.

Specification of Domain-Separated Hashes
The latest Internet Draft, draft-irtf-cfrg-frost-01, includes details about how to use a general-
purpose cryptographic hash function to implement the hash functions H1(), used to derive
the binding factors ρi during signing, andH2(), used to derive the Schnorr challenge c during
signing:

6.2. Cryptographic Hash Function

FROST requires the use of a cryptographically secure hash function,
generically written as H, which functions effectively as a random
oracle. For concrete recommendations on hash functions which SHOULD
BE used in practice, see Section 9.

Using H, we introduce two separate domain-separated hashes, H1 and
H2, where H1(m) = H("rho" || len(m) || m) and H2(m) = H("chal" ||
len(m) || m).

39https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2020/852&version=20200712:124135&file=852.pdf
40https://www.ietf.org/archive/id/draft-komlo-frost-00.txt
41https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-00
42https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-frost-01
43https://eprint.iacr.org/eprint-bin/getfile.pl?entry=2020/852&version=20201222:190959&file=852.pdf
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Schnorr Proof of Knowledge (PoK) of Secret (ai0) During DKG
FROST’s DKG protects against rogue key attacks by including a proof of knowledge (PoK) of
secret values ai0. The older versions of FROST use Schnorr signatures, where the proof is in
Zq × Zq . The newer version of FROST uses the honest-verifier zero-knowledge (HVZK) proof
derived from Schnorr’s identification protocol, where the proof is in G× Zq .

In more detail, the differences are the following:

• In kryptology, which follows the eprint paper from July 2020 and draft-komlo-frost-00 from
August 2020:
– The proof for gai0 is generated during round 1 of DKG as σi = (µi, ci) ∈ Zq ×Zq , where
µi = ki + ai0 · ci mod q for a random ki ∈ Zq , and ci = H(i,Φ, gai0 , Ri), for Ri = gki

and a context string Φ.
– The proofs are verified during round 2 of DKG by computing Xi = gµi · (gai0)−ci and
checking ci

?
= H(i,Φ, gai0 , Xi).

• In the eprint paper from December 202044:
– The proof for gai0 is generated during round 1 of DKG as σi = (Ri, µi) ∈ G×Zq , where
Ri = gki for a random ki ∈ Zq , and µi = ki+ai0 ·ci mod q, where ci = H(i,Φ, gai0 , Ri),
for a context string Φ.

– Theproofs are verified during round2of DKGby computing the hash ci = H(i,Φ, gai0 , Ri)

and checking Ri
?
= gµi · (gai0)−ci .

Recommendation • Keep the implementation of FROST in kryptology up to date with the latest available draft
specification from https://datatracker.ietf.org/doc/draft-irtf-cfrg-frost/. The next update is
expected by February 2022.
– Rewrite the proof of knowledge following the protocol as specified in the updated paper
and Internet Draft.

• Consider monitoring the issues reported on the draft author’s GitHub repository (https://gi
thub.com/chelseakomlo/frost-spec/issues).

Coinbase Category Security / Implementation issues

44Note that the latest Internet Draft of FROST does not include DKG.
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Finding ScalarP256’s SetBytesWide()MethodMay Return Incorrect or Non-Canonical
Scalars

Risk Informational Impact: Low, Exploitability: None

Identifier NCC-E002578-011

Status New

Category Cryptography

Component curves

Location kryptology/pkg/core/curves/p256_curve.go

Impact • The ScalarP256 value returned by the SetBytesWide() function may return scalars that
are not equal to the input bytes (interpreted as a big-endian unsigned integer) modulo the
order of the parent curve secp256r1 (NP256).

• The returned value s may be larger than NP256, which could result in an otherwise honest
party mistakenly being identified as malicious for sending a non-canonical scalar (i.e. one
not satisfying 0 ≤ s < NP256).

Description In kryptology, the ScalarP256 method SetBytesWide() reduces an integer modulo the
order of the wrong curve — secp256k1, instead of secp256r1. This error is similar to the one
in the function IsOnCurve() (see finding NCC-E002578-004 on page 7) and could also have
happened when copy-pasting code from pkg/core/curves/k256_curve.go.

The error is highlighted in the code snippet below from pkg/core/curves/p256_curve.go:

220 func (s *ScalarP256) SetBytesWide(bytes []byte) (Scalar, error) {
221 if len(bytes) < 32 || len(bytes) > 128 {
222 return nil, fmt.Errorf("invalid byte sequence")
223 }
224 value := new(big.Int).SetBytes(bytes)
225 value.Mod(value, btcec.S256().N)
226 return &ScalarP256{
227 value,
228 }, nil
229 }

The order of secp256k1 (the Bitcoin curve) is
NS256 = FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,

while the order of secp256r1 is smaller:
NP256 = FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551.

Using the wrong group order has two implications.

First, if the input bytes, when interpreted as a big-endian unsigned integer, correspond to
a value greater than NS256, then at least one modular reduction will occur, and the output
value will not be equal to the input moduloNP256, as the caller of the function would expect.
The correctness of other computations may be affected.

Second, if the input bytes correspond to a value greater than NP256, then it is possible that
the output is in the range [NP256, NS256−1]. The number of values in this range is about 2224,
whichmeans that the probability that the output of SetBytesWide() on a random, sufficiently
long bytestring is in this range is about 2224/2256 = 1/232, or about 1 in 4.2 billion. If the
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output scalar s is then sent to other parties as part of a protocol, and those parties validate the
scalar by verifying that it is canonically represented (i.e. that 0 ≤ s < NP256), this validation
would not succeed. If this were to happen in a protocol like FROST that is non-robust and
designed to abort when it identifiesmisbehaving participants, then it could result in an honest
participant being identified as misbehaving and causing the protocol to abort, despite them
not intentionally having misbehaved.

Currently in the FROST implementation, only the SetBytesWide()method for Ed25519 scalars
appears to be used (in pkg/ted25519/frost/challenge_derive.go, line 25), so this vulnerability
is not exploitable.

Recommendation Fix the function SetBytesWide() in kryptology/pkg/core/curves/p256_curve.go by replacing
btcec.S256().N with elliptic.P256().Params().N.

Coinbase Category Security / Implementation issues
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Appendix A: Notes
This appendix contains additional notes and observations that did not warrant findings, but were deemed worthy of
pointing out.

• Misleading function name in pkg/sharing/shamir.go: the Shamirmethod getPolyAndShares() returns shares,
poly rather than poly, shares.

• Typo in pkg/core/curves/curve.go: BLS12831Name has the 8 and 3 transposed: BLS12831Name = "BLS12831".
• ScalarBls12381Gt struct is incorrect in pkg/core/curves/bls12381_curve.go. The target group GT should have
the same order (q, 255 bits) as G1 and G2, however, the implementations of many of its methods appear to use
576-byte values, as if they were constructing field elements of the extension F12

p (for p of 381 bits).
• Hard-to-read code due to design choices. Structs implementing the Scalar interface define implementations of a
Random()method. Although this is a method of a Scalar object, it does not at all use the member variable, value
, of the Scalar. Instead, it returns a new Scalar. This results in confusing code, such as the following, from pkg/
sharing/polynomial.go:

18 func (p *Polynomial) Init(intercept curves.Scalar, degree uint32, reader io.Reader) *Polynomial {
19 p.Coefficients = make([]curves.Scalar, degree)
20 p.Coefficients[0] = intercept.Clone()
21 for i := 1; i < int(degree); i++ {
22 p.Coefficients[i] = intercept.Random(reader)
23 }
24 return p
25 }

The generation of random scalars on line 22 has nothing to do with the secret intercept which is used as the
constant term in the polynomial. A more appropriate design could be to have a function RandomScalar() as a
method of the curve.

• xor() function may silently fail in pkg/core/hash.go. The xor() function (copied below) expects both byte arrays
to be the same length, but does not implement any handling when this is not the case. If this function were used in
a situation where len(b2) < len(b1), then the code would panic with an “index out of range” runtime error. If it
were used with len(b1) < len(b2), then the last byte(s) of b2 would simply be ignored. Currently, the function is
used only in the core package, in ExpandMessageXmd(), where its usage appears safe.

113 func xor(b1, b2 []byte) []byte {
114 // b1 and b2 must be same length
115 result := make([]byte, len(b1))
116 for i := range b1 {
117 result[i] = b1[i] ^ b2[i]
118 }
119

120 return result
121 }

• Left-over code that does not appear to be used anymore still exists in a few places. Removing dead codewill improve
ease of maintenance and readability of the codebase, and prevent any vulnerabilities arising from its accidental use.
– pkg/core/curves/pallas_curve.go: The old, big.Int-based scalar implementation (PallasScalar) is still in the file
(lines 158–206), alongside the new implementation (ScalarPallas).

– pkg/core/curves/ec_scalar.go: The EcScalar interface defined here (and the structs that implement it — K256
Scalar, P256Scalar, Bls12381Scalar, and Ed25519Scalar) are not used in FROST; FROST uses the Scalar
interface defined in pkg/core/curves/curve.go (and the types ScalarK256, ScalarP256, ScalarBls12381, and
ScalarEd25519).

– pkg/core/curves/ec_point.go: The EcPoint struct defined here is not used in FROST; FROST uses the Scalar
interface defined in pkg/core/curves/curve.go and curve-specific structs.

– pkg/sharing/v1/: The 19 files in this folder all appear to have been replaced elsewhere.
• Verifiable Secret Sharing will not split 0 in pkg/sharing/feldman.go. Note that, in the future, it is possible that
kryptology requires creating secret shares of 0, e.g. if a protocol requires secret-sharing a sign bit. The check that
the secret is not zero (on line 65, copied below) could be moved outside of the function wherever it is used, e.g.

40 | Coinbase, Inc. FROST Implementation Security Assessment Coinbase, Inc. / NCC Group Confidential



when splitting ai0 in pkg/dkg/frost/dkg_round1.go, line 56. There, the check for whether the secret is 0 could occur
directly after sampling it (on line 44).

64 func (f Feldman) Split(secret curves.Scalar, reader io.Reader) (*FeldmanVerifier, []*ShamirShare,
error) {

65 if secret.IsZero() {
66 return nil, nil, fmt.Errorf("invalid secret")
67 }

• Assumption about imported FieldElement type from edwards25519 package in cselect() in pkg/core/curves/
ed25519_curve.go. The dependency github.com/bwesterb/go-ristretto/edwards25519uses build constraints to pro-
vide two different implementations of the FieldElement type:
– field_generic.go45: type FieldElement [10]int32 . The build constraint // +build !amd64,!go1.13 force
generic indicates that this file will be included if either (i) the target architecture is not amd64 and the version of
Go is earlier than 1.13, or (ii) the forcegeneric build tag is supplied.

– field_radix51.go46: type FieldElement [5]uint64. The build constraint // +build amd64,!forcegeneric
go1.13,!forcegeneric indicates this file will be included if (i) the target architecture is amd64 and the forceg
eneric build tag is not supplied, or (ii) the version of Go is at least 1.13 and the forcegeneric build tag is not
supplied.

The cselect() conditional select function in ed25519_curve.go assumes ed.FieldElement is an array of length 5,
as when the ed25519 dependency is built with field_radix51.go.

542 // cselect sets v to a if cond == 1, and to b if cond == 0.
543 func cselect(v, a, b *ed.FieldElement, cond bool) *ed.FieldElement {
544 const mask64Bits uint64 = (1 << 64) - 1
545

546 m := uint64(0)
547 if cond {
548 m = mask64Bits
549 }
550

551 v[0] = (m & a[0]) | (^m & b[0])
552 v[1] = (m & a[1]) | (^m & b[1])
553 v[2] = (m & a[2]) | (^m & b[2])
554 v[3] = (m & a[3]) | (^m & b[3])
555 v[4] = (m & a[4]) | (^m & b[4])
556 return v
557 }

If kryptology were ever built for a 32-bit architecture or a non-amd64 system, with a version of Go older than 1.13,
this code would fail to compile, since Go does not perform any implicit conversions of numeric types. (Also note that
there is secret-dependent branching on line 547 – see the recommendations in section (iii) of finding NCC-E002578-
005 on page 21, which also suggest replacing boolean types and logical operators with bitwise functions on integer
types.)

45https://github.com/bwesterb/go-ristretto/blob/master/edwards25519/field_generic.go#L7
46https://github.com/bwesterb/go-ristretto/blob/59c0de2354cd7e534807bba5f608e4ee1933082e/edwards25519/field_radix51.go#L7
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Appendix B: Finding Field Definitions
The following sections describe the risk rating and category assigned to issues NCC Group identified.

Risk Scale
NCC Group uses a composite risk score that takes into account the severity of the risk, application’s exposure and
user population, technical difficulty of exploitation, and other factors. The risk rating is NCC Group’s recommended
prioritization for addressing findings. Every organization has a different risk sensitivity, so to some extent these
recommendations are more relative than absolute guidelines.

Overall Risk
Overall risk reflects NCC Group’s estimation of the risk that a finding poses to the target system or systems. It takes
into account the impact of the finding, the difficulty of exploitation, and any other relevant factors.

Critical Implies an immediate, easily accessible threat of total compromise.

High Implies an immediate threat of system compromise, or an easily accessible threat of large-scale
breach.

Medium A difficult to exploit threat of large-scale breach, or easy compromise of a small portion of the
application.

Low Implies a relatively minor threat to the application.

Informational No immediate threat to the application. May provide suggestions for application improvement,
functional issues with the application, or conditions that could later lead to an exploitable finding.

Impact
Impact reflects the effects that successful exploitation has upon the target system or systems. It takes into account
potential losses of confidentiality, integrity and availability, as well as potential reputational losses.

High Attackers can read or modify all data in a system, execute arbitrary code on the system, or escalate
their privileges to superuser level.

Medium Attackers can read or modify some unauthorized data on a system, deny access to that system, or
gain significant internal technical information.

Low Attackers can gain small amounts of unauthorized information or slightly degrade system
performance. May have a negative public perception of security.

Exploitability
Exploitability reflects the ease with which attackers may exploit a finding. It takes into account the level of access
required, availability of exploitation information, requirements relating to social engineering, race conditions, brute
forcing, etc, and other impediments to exploitation.

High Attackers can unilaterally exploit the finding without special permissions or significant roadblocks.

Medium Attackers would need to leverage a third party, gain non-public information, exploit a race condition,
already have privileged access, or otherwise overcome moderate hurdles in order to exploit the
finding.

Low Exploitation requires implausible social engineering, a difficult race condition, guessing difficult-to-
guess data, or is otherwise unlikely.
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Category
NCCGroup categorizes findings based on the security area to which those findings belong. This can help organizations
identify gaps in secure development, deployment, patching, etc.

Access Controls Related to authorization of users, and assessment of rights.

Auditing and Logging Related to auditing of actions, or logging of problems.

Authentication Related to the identification of users.

Configuration Related to security configurations of servers, devices, or software.

Cryptography Related to mathematical protections for data.

Data Exposure Related to unintended exposure of sensitive information.

Data Validation Related to improper reliance on the structure or values of data.

Denial of Service Related to causing system failure.

Error Reporting Related to the reporting of error conditions in a secure fashion.

Patching Related to keeping software up to date.

Session Management Related to the identification of authenticated users.

Timing Related to race conditions, locking, or order of operations.

43 | Coinbase, Inc. FROST Implementation Security Assessment Coinbase, Inc. / NCC Group Confidential



Appendix C: Project Contacts
The team from NCC Group has the following primary members:

• Marie-Sarah Lacharité — Consultant
marie-sarah.lacharite@nccgroup.com

• Giacomo (Jack) Pope — Consultant (Shadow)
giacomo.pope@nccgroup.com

• Javed Samuel — Practice Director, Cryptography Services
javed.samuel@nccgroup.com

The team from Coinbase, Inc. has the following primary members:

• Jeff Barksdale
jeff.barksdale@coinbase.com

• Michael Lodder
mike.lodder@coinbase.com

• Luis Ocegueda
luis.ocegueda@coinbase.com

• Daniel Zhou
daniel.zhou@coinbase.com
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