
Threshold ECDSA Pseudocode for Coinbase

1 Overview

This document contains pseudocode for ECDSA threshold signatures based on the recent paper of
Gennaro and Goldfeder [4]. The exact details of the protocol presented emerged from conversations
with Coinbase as to what best suits their needs (e.g. not necessary to attribute misbehavior to
a single server). Throughout the document, we will reference specific design decisions and briefly
mention the other options available, should it be of interest at some point for us to elaborate
further.

Our goal is for this to be a living document that we update with requested clarifications. During
the second phase of this engagement, we will also add pseudocode for a dealerless protocol as well
as a protocol to dynamically re-share the key.

1.1 Sequential vs. Concurrent Security

The protocol described here is proven secure under sequential composition (i.e. with signatures
issued one at a time sequentially) against a static adversary. We conjecture that the protocol is
secure sequentially as well as all known attacks of this form are non-practical, although this is
not provable in the current protocol. We could provide a variant of our protocol with Universally
Composable (UC) concurrent provable security, although this would take an efficiency hit, and
based discussions with Coinbase, we are providing the simple protocol which has been proven
secure in the standalone sequential model.

Should this decision change once implemented, please let us know and we can provide a docu-
ment for the UC protocol.

1.2 On our use of the Fiat-Shamir Heuristic

In our academic paper, we assume that the zero knowledge proofs in the protocol are interactive,
but in practice these can be made non-interactive using the Fiat-Shamir heuristic in the random
oracle model.

However, there is one irregularity in our use of Fiat-Shamir in that we use it for proofs of
knowledge, which means that in the security proof, the simulator must extract the adversary’s
private values. For interactive proofs this is done via “rewinding”. Our proofs are three move
sigma protocols, which involve the prover committing, the verifier issuing a challenge, and the
prover responding. The sigma protocols have a “special soundness” property which means that if
the prover commits to its first message and then responds to two different challenges, the verifier
can extract the witness. In a “rewinding” argument, the simulator rewinds the adversary back
to its first commitment in the sigma protocol and provides a different challenge. The adversary,
unaware that it was rewound, responds allowing the prover to extract the witness.

In Fiat-Shamir proofs, the challenge is not supplied by the adversary but by the Random
Oracle, and thus all three steps of the protocol are done by the prover: It commits, queries the
random oracle, and responds, and then sends the transcript to the verifier. In order to extract by
a typical rewinding argument, it is crucial to be able to rewind back to the point in between when
the prover commits and gets a challenge. But if the protocol is fully non-interactive the simulator
cannot do that since it can only rewind the adversary to the point before it committed. And at
this point, the adversary can change its commitment, preventing extraction.

The simplest way to deal with this is by adding an additional round for the FS proofs – in which
the adversary sends and commits to its first message. However, in an effort not to add rounds, we

2

conjecture that there exists a non black-box extractor that allows us to extract the secret values
from the adversary.

We are happy to discuss this more, and if you are not comfortable with this assumption, we
can add commitment rounds to the proofs. We also mention that related to the point above: the
UC version of the protocol does not extract from the FS proofs and thus this issue doesn’t arise.

1.3 Accessibility

Throughout this document, we have often appealed to color in the pseudocode to convey important
data and simplify the presentation. Upon request, we would be happy to provide an accessible
version of this document that does not use color to convey information.

2 Preliminaries

In this section, we will discuss the primitives on which we rely, and provide pseudocode when
appropriate.

2.1 ECDSA signatures

The Digital Signature Algorithm (DSA) was proposed by Kravitz in 1991, and adopted by NIST in
1994 as the Digital Signature Standard (DSS) [1, 6]. ECDSA, the elliptic curve variant of DSA, has
become quite popular in recent years, especially in cryptocurrencies. Our focus in this document
will be on ECDSA.

We will for completeness cover the details of ECDSA here, and indeed the standard ECDSAVerify
function will be compatible with the signatures produced by the threshold signing protocol. We do
not include pseudocode as we strongly recommend that you choose an existing centralized ECDSA
implementation and ensure that you are compatible with the verifier, and we do not recommend
implementing this from scratch as there are numerous open-source high quality implementations.

The Public Parameters consist of a cyclic group G of prime order q, a generator g for G, a hash
function H : {0, 1}∗ → Zq, and another hash function H ′ : G → Zq.

Key-Gen On input the security parameter λ, outputs a private key x chosen uniformly at random in Zq,
and a public key y = gx computed in G.

Sig On input an arbitrary message M ,
• Compute m = H(M) ∈ Zq
• choose k ∈R Zq
• compute R = gk

−1

in G and r = H ′(R) ∈ Zq
• compute s = k(m+ xr) mod q
• output σ = (r, s)

Ver On input M,σ and y,
• check that r, s ∈ Zq
• compute R′ = gms

−1 mod qyrs
−1 mod q in G

• Accept (output 1) iff H ′(R′) = r.

The traditional DSA algorithm is obtained by choosing large primes p, q such that q|(p − 1)
and setting G to be the order q subgroup of Z∗p . In this case the multiplication operation in G is
multiplication modulo p. The function H ′ is defined as H ′(R) = R mod q.

The ECDSA scheme is obtained by choosing G as a group of points on an elliptic curve of
cardinality q. In this case the multiplication operation in G is the group operation over the curve.
The function H ′ is defined as H ′(R) = Rx mod q where Rx is the x-coordinate of the point R.

The specific choice of the curve and hash function H will depend on the implementation, and
the threshold signing protocol is agnostic to these choices.

Threshold ECDSA Pseudocode for Coinbase 3

2.2 Cryptographic Hash functions

Aside from the hash function used to hash the ECDSA message, our protocol employs a hash
function to be used in the commitment scheme as well as for the Random Oracle for making our
zero-knowledge proofs non-interactive using Fiat-Shamir. In the pseudocode, we refer to SHA256,
but other cryptographically secure hash functions could be used as well (e.g. SHA3).

Notation. When the pseudocode contains a call to SHA256(a, b, c) we mean that the values a, b,
and c should be concatenated with an appropriate delimiter in between them to ensure that the
separation between protocol values can never be ambiguous. The delimiter should be a character
that can never appear in the hashed values (e.g. $).

2.3 Fiat Shamir Hash function

In our zero knowledge proofs, we require a hash function to non-interactively compute the Fiat-
Shamir challenge. We could use a hash function with an appropriate delimiter as discussed in the
previous paragraph, but in order to make encoding simple without need to worry about message
lengths, we propose the following simple hash function in which we first hash the internal messages
and then combine the intermediate hashes into a single digest. Since the intermediate hashes are
fixed length, no delimiters are needed for the final digest, and we indicate this using the simple
concatenation operator, ||.

h← FS-HASH(m1,m2, . . . ,mn)

1. For i = [1, . . . , n]

2. Compute hi = SHA256(mi)

3. Compute h = SHA256(h1||h2|| · · · ||hn)

4. Return h

2.4 Network assumptions

We assume that each pair of players is connected by a point-to-point authenticated channel. In
the pseudocode, sending a message over this channel is denoted by the P2PSend function, and this
will be used when players need to send unique messages to other players.

We also make use of a Broadcast function which is called when players need to send the same
message to all other players. We differentiate between two uses of broadcast in this document.
When we just write Broadcast we refer to sending an identical authenticated message to every
other player, although we do not need any guarantees of a reliable broadcast. In other words, we
do not need to guarantee that all players see the same message (although the protocol will abort
without a signature if someone sent the wrong message.

We will also make use of a reliable broadcast channel, in particular in the distributed key
generation protocol. Since we are in the dishonest majority model, a simple echo broadcast suffices.
During an echo broadcast, each players utilizes the point-to-point channel to send each player a
hash of its view of the the messages sent from all players. If any party receives an inconsistent
hash from some other party, it aborts. When we require echo broadcast in the pseudocode, we will
denote this with the function EchoBroadcast.

Importantly, whenever a party aborts, they should send a message to all other players indicating
that they have aborted.

2.5 Commitment scheme

Throughout the protocol, we use a commitment scheme so that players can commit to values in a
manner that will bind them to their choice but also hide their choice until they choose to reveal

4

it. We require that the commitment schemes is non-malleable and concurrently secure, roughly
meaning that given a set of commitments one cannot compute a commitment to a different but
related value. In the Random Oracle model, we can achieve this using the simple “canonical”
commitment function.

For the commitment function, we could use a cryptographic hash function and separate the
two inputs by an appropriate delimiter. Here, we use HMAC, and in our notation, the first input
is the HMAC key and the second input is the message.

[C,D]← Commit(m)

1. Choose r
$← {0, 1}256 // r is a 256-bit random nonce

2. Compute C = HMAC(r,m)

3. Set D = (m, r)

4. Return [C,D]

m←Open(C,D = (m, r))

1. If (D 6= nil),

2. Compute Ccheck = HMAC(r,m)

3. If (Ccheck = C)

4. Return m

5. Return ⊥

2.6 Paillier Cryptosystem

The threshold ECDSA protocol makes heavy use of an encryption scheme that is additively homo-
morphic modulo a large integer N , and we instantiate it with Paillier’s cryptosystem [7].

Let Epk(·) denote the encryption algorithm for E using public key pk. Given ciphertexts c1 =
Epk(a) and c2 = Epk(b), there is an efficiently computable function +E such that

c1 +E c2 = Epk(a+ b mod N)

The existence of a ciphertext addition operation also implies a scalar multiplication operation,
which we denote by ×E . Given an integer a ∈ N and a ciphertext c = Epk(m), then we have

a×E c = Epk(am mod N)

We include the pseudocode for Paillier’s cryptosystem, but if a suitable library is identified, it
may be preferable to use it rather than re-implement it.

On the security of Paillier. We note that while the Paillier cryptosystem is widely used in prac-
tice, it has not been standardized, relies on non-standard assumptions and is less studied than
standardized primitives. We recommend instantiating our protocol with Paillier, but following the
approach of [2], we can instantiate our protocol using a sub-protocol that makes use of Oblivious
Transfer instead of Paillier, at the cost of bandwidth efficiency.

Our recommendation is to use Paillier as we are comfortable with its security and it yields a
significantly better overall protocol with respect to the amount of data communicated between
signers, but we can provide the alternative if it is desired.

Threshold ECDSA Pseudocode for Coinbase 5

(pk, sk)←PaillierKeyGen(1κ)

1. Choose a 1024-bit prime P

2. Choose a 1024-bit prime Q

3. Compute N = P ·Q
4. Compute λ(N) = lcm(P − 1, Q− 1)

5. Compute u = L((N + 1)λ(N) mod N2, N)−1 mod N

6. Compute φ(N) = (P − 1) · (Q− 1)

7. Set pk = N

8. Set sk = [N, λ(N), φ(N), u]

9. Return (pk, sk)

c←PaillierEncrypt(pk,m)

1. Set N = pk.N

2. If m /∈ ZN , Return ⊥
3. Choose r

$← Z∗N
4. Compute c = (N + 1)mrN mod N2

5. Return c

(c, r)←PaillierEncryptAndReturnRandomness(pk,m)

1. Set N = pk.N

2. If m /∈ ZN , Return ⊥
3. Choose r

$← Z∗N
4. Compute c = (N + 1)mrN mod N2

5. Return (c, r)

m←PaillierDecrypt(sk, c)

1. Set N = sk.N

2. If c /∈ ZN2 , Return ⊥
3. Compute m = L(cλ(N) mod N2, N) · u mod N

4. Return m

c3 ←PaillierAdd(pk, c1, c2)

1. Set N = pk.N

2. If c1, c2 /∈ ZN2 , Return ⊥
3. Return c1 · c2 mod N2

c2 ←PaillierMultiply(pk, a, c1)

1. Set N = pk.N

2. If a /∈ ZN , Return ⊥
3. If c1 /∈ ZN2 , Return ⊥
4. Return ca1 mod N2

c3 ←L(u,N)

1. If u /∈ ZN2 , Return ⊥
2. If u 6= 1 mod N , Return ⊥
3. Return (u− 1)/N

Fig. 1: The Paillier Cryptosystem. Paillier’s cryptosystem is an additively homomorphic encryp-
tion scheme, which supports the addition of two ciphertexts and the multiplication of a ciphertext
and a scalar. In a standalone instantiation of Paillier’s cryptosystem, we would not need the Pail-
lierEncryptAndReturnRandomness function, but it is often useful (and required in our threshold
signing protocol) to return the randomness to facilitate proving statements about the ciphertext.
In all cases, it is important that the randomness r is kept private and not passed around as part
of the ciphertext.

2.7 Shamir’s Secret Sharing (SSS) Scheme

The underlying secret sharing scheme used in the threshold signing protocol is Shamir Secret
Sharing (SSS) [8]. For a prime q, Shamir’s secret sharing allows one to share a secret x ∈ Zq by
distributed points on a random degree t polynomial p(·) with x as the constant term:

p(x) = x+ a1x+ a2x
2 + · · ·+ atx

t mod q

.

6

Each player Pi is associated with a unique non-zero index pi and the player’s share is p(pi), the
evaluation of the polynomial at pi. Given t+ 1 shares, the polynomial can be reconstructed using
Lagrange interpolation, and the secret is obtained by evaluating the polynomial at 0.

We now provide pseudocode for both sharing and revealing a secret using Shamir’s secret
sharing. We note that we will not use Reveal anywhere in our protocol and have only included it
for informational completeness, but it does not need to be implemented.

[x1, . . . , xn]← ShamirShare(x, t, q, [p1, . . . , pn])

1. For i = [1, . . . , t] // Generate random coefficients

2. Choose ai
$← Zq

3. For i = [1, . . . , n]

4. If pi = 0, Abort

5. xi = x+ a1pi + a2p
2
i + · · ·+ atp

t
i mod q

6. Return [x1, . . . , xn]

x←Reveal(q, [p1, x1], . . . , [pt+1, xt+1])

1. Set x = 0

2. For i = [1, . . . , t+ 1]

3. Set ` = xi
4. For j = [1, . . . , t+ 1]

5. If i = j, Continue

6. Compute ` = `×
pj

pj−pi
mod q

7. Compute x = x+ ` mod q

8. Return x

Fig. 2: Shamir’s secret sharing scheme. In the ShamirShare algorithm, the dealer generates a
random polynomial of degree t and evaluates it at pi, the index associated with each player Pi. The
dealer then distributed the appropriate share to each player, which they are to keep secret. The
Reveal algorithm takes any t+1-sized subset of shares, reconstructs the polynomial using Lagrange
interpolation, and outputs the secret.

2.8 Verifiable Secret Sharing (VSS)

A verifiable secret sharing scheme builds on the idea of a secret sharing scheme and gives the
participants the ability to verify that their shares are consistent with public values that the dealer
will publish. Looking forward to the protocols described in this document, when ECDSA key
generation is done by a trusted dealer, using Shamir’s Secret Sharing suffices. When distributed
key generation is used, the players will require a verifiable secret sharing scheme.

Feldman’s VSS Here, we describe Feldman’s secret sharing scheme which supplements Shamir’s
scheme. The reveal function is unchanged, so we just describe the new sharing function, Feldman-
Share which outputs both the public values as well as the individual shares. We also present the
FeldmanVerify, a function that allows any player to verify their shares with respect to the public
values.

For each coefficient ai of the polynomial on which the secret is shared, the dealer will also
publish vi = gai ∈ G, where G is a group of prime order q and g is a generator for that group.
These values will allow each player to construct its share in the exponent and check the result.

Threshold ECDSA Pseudocode for Coinbase 7

[v0, . . . , vt], [x1, . . . , xn]← FeldmanShare(g, x, t, q, [p1, . . . , pn])

1. Compute v0 = gx in G
2. For i = [1, . . . , t] // Generate random coefficients

3. Set ai
$← Zq

4. Compute vi = gai in G
5. For i = [1, . . . , n]

6. If pi = 0, Abort

7. xi = x+ a1pi + a2p
2
i + · · ·+ atp

t
i mod q

8. Return [v0, . . . , vt], [x1, . . . , xn]

True/False← FeldmanVerify(g, q, xi, pi[v0, . . . , vt])

1. Set v = v0
2. For j = [1, . . . , t]

3. Compute cj = pji mod q

4. Compute v = v × v
cj
j in G

5. If v = gxi , Return True

6. Else Return False

Fig. 3: Feldman’s verifiable secret sharing scheme. In the FeldmanShare function, the dealer
generates a Shamir share to be distributed to each player, as well as auxiliary public values
[v0, . . . , vt]) to enable verification. The FeldmanVerify allows an individual player to check the cor-
rectness of their share with respect to the public information. Reveal is unchanged from Shamir’s
scheme and hence omitted here.

2.9 Security with Abort

Since we are in the dishonest majority model, it is not possible to guarantee that the protocol will
always successfully generate a signature as some parties may refuse to participate or send incorrect
values. The protocol as described here is secure in the presence of aborts. This means that the
protocol may abort without a signature, but security is maintained and the adversary will remain
unable to forge messages.

In the protocol described here, it is not always possible to identify which player caused the
protocol to fail. In [4], there is a variant of the protocol that supports identification of misbehavior.
However, this requires a cryptographic broadcast channel or a bulletin board (/blockchain). Based
on our discussions, we did not include the identifiability feature in this document.

When a protocol aborts, the pseudocode contains the Abort call. When this is called, the signer
should broadcast a message that it has aborted and refuse to participate further in the aborted
instantiation of the protocol.

2.10 Notation

In the pseudocode, each function invocation marked in red is a call to a sub-function. Values
marked in green should be stored persistently for the duration of the signing protocol as they will
be needed in subsequent rounds. We also note such values as return parameters of the function in
which they are initially computed.

We use the notation [xj]j 6=i to denote an array of values [x1, x2, · · · , xi−1, xi+1, · · · , xn] with
the value xj corresponding to player Pj for every other player Pj 6=i.

Whenever a function takes as input multiple values from different players, we will require that
players not proceed before receiving all of those values. In practice, an optimized implementation
may allow players to begin locally computing values before they’ve received all of the input, but
under no circumstances should a player send or broadcast any of the resulting values before it has
received all of the inputs sent by other players during the previous round.

8

3 Key Generation with a trusted dealer

We now describe the key generation protocol in the presence of a trusted dealer. The protocol
assumes that each player has a unique, public, non-zero index pi that is assigned to that player.
As a practical matter, we recommend assigning each player a sequential index beginning at 1.

The high-level purpose of the key generation procedure is to output (1) a public ECDSA signing
key, (2) private key shares for each signer corresponding to the public signing key, (3) Paillier key
pairs for each player and (4) trusted parameters for instantiating the zero-knowledge proofs that
will be employed during the signing protocol.

As input, the Dealer receives the index of each player, the signing threshold t such that t + 1
players1 must participate to sign, and the curve parameters. The dealer also needs to choose the
size of the proof modulus, but we have hard-coded suitable parameters.

We note that in the event that multiple key generations are performed with different signing
keys, the proof parameters can be reused as long as the dealer is trusted by all of the signers. For
this reason we have separated the dealer into two functions, the first of which is a global setup for
generating proof parameters and the second is a per-signing group/key setup.

We note that having a trusted dealer generate the proof parameters (i.e. DealerGenerateProof-
Params()) will lead to a significant performance increase in the signing protocol. By contrast, having
the dealer generate the other parameters (DealerKeyGen()) simplifies the key generation but will
not simplify the signing protocol. It thus might make sense to restrict the dealer to running Deal-
erGenerateProofParams() which as noted above can be run once for all key generation instances,
and use the distributed key generation procedure for all subsequent instantiations.

(Ñ, h1, h2)← GenerateProofParams()

1. Choose a 1024-bit safe prime P // P = 2p+ 1 where both P and p are prime

2. Choose a 1024-bit safe prime Q // Q = 2q + 1 where both Q and q are prime

3. Compute Ñ = P ·Q
4. Choose f

$← ZÑ∗
5. Choose α

$← ZÑ∗
6. Compute h1 = f2 mod Ñ // square f

7. Compute h2 = hα1 mod Ñ

8. Return Ñ, h1, h2

y, [x1, x2, . . . , xn], [X1, X2, . . . , Xn]←DealerKeyGen(g, q, [p1, p2, . . . , pn], t)

1. Choose x
$← Zq

2. Compute y = gx

3. [x1..., xn]← ShamirShare(x, t, {p1, . . . , pn})
4. For i = [1, . . . , n]

5. Compute Xi = gxi

6. Compute ski, pki = PaillierKeyGen(1κ) // generate a Paillier key pair for each player

7. Return y, [x1, x2, . . . , xn], [X1, X2, . . . , Xn]

Fig. 4: Threshold key generation with a trusted dealer.We split the function into two parts:
one for creating the proof parameters which can be run once to establish global parameters for all
key generations that trust the dealer running it (DealerGenerateProofParams), and one for generat-
ing the ECDSA key shares, ECDSA public key, and the Paillier key for each player (DealerKeyGen).

At the end of the key generation, the dealer distributes the following public parameters to each
player:

1 Note that in this document a threshold value of t implies that t + 1 signer are needed to generate a
signature. This notation is consistent with the academic literature, but inconsistent with e.g. Bitcoin
multi-signatures in which (k, n) signatures require the participation of k parties (and not k + 1).

Threshold ECDSA Pseudocode for Coinbase 9

1. The ECDSA public key: y

2. The index of every player: pi, . . . , pn

3. The ECDSA public key share for all players: [Xi, . . . , Xn]

4. The Paillier public keys of all players: [pk1, . . . , pkn]

5. The global proof parameters: Ñ , h1, h2

Additionally, for every player Pi, the dealer distributes the following which is to be kept privately
by that player:

1. The ECDSA private key share: xi

2. The Paillier private key: ski

We stress that the ECDSA verification algorithm will only need the public key y. The other
parameters are required to securely generate the signature using the distributed signing protocol.

4 Distributed Key Generation (DKG)

In this section, we will describe the protocol for distributed key generation, for which no trusted
dealer is required. We note that for fresh addresses this is likely always preferable from a security
perspective, but the dealer protocol will still be useful for importing legacy addresses.

We also note that the choice of key generation procedure is not isolated from the signing
protocol. When a dealer is employed, it can generate trusted parameters for zero-knowledge proofs.
In cases where a single player is trying to prove an identical statement to multiple other players, a
single proof using the trusted parameters suffices. By contrast, when no trusted dealer is employed,
there is no globally trusted set of parameters and each verifier will require its own proof even for
the same statement. Thus from a performance viewpoint, the signing protocol will require more
bandwidth and take more compute time when instantiated with a DKG.

As before, the protocol assumes that each player has a unique, public, non-zero index pi that is
assigned to that player and known before the DKG begins. As a practical matter, we recommend
assigning each player a sequential index beginning at 1. Also input to the DKG is the signing
threshold t such that t+ 1 players must participate to sign, and the curve parameters.

The output of the protocol will be similar as without a DKG, differing only in the proof
parameters. The output consists of: (1) a public ECDSA signing key, (2) private key shares for
each signer corresponding to the public signing key, (3) Paillier key pairs for each player and (4)
per-player parameters for instantiating the zero-knowledge proofs that will be employed during the
signing protocol.

Whereas the protocol would take a security parameter, in this document we hardcode recom-
mended concrete parameters. For the Paillier modulus, we recommend using 2048 bits.

In general, a player should never proceed to send any value in a subsequent round until it has
received all values from the previous rounds. We use green to denote values that need to be stored
for use in future rounds of the protocol. When an input parameter to a round function needs to
be stored for future rounds, we denote that using green on its first appearance, but we do not
explicitly list it as an input to subsequent round functions (i.e. we assume that it is stored and can
be accessed from any subsequent round function.

10

4.1 Threshold DKG Protocol

(Di, ski, pki, Ñi, h1i, h2i, [vi0, . . . , vit], [xi1, . . . , xin])←DistKeyGenRound1(g, q, i, [p1, . . . , pn], t)

1. Choose ui
$← Zq

2. Compute [vi0, . . . , vit], [xi1, . . . , xin]← FeldmanShare(g, ui, t, q, [p1, . . . , pn])

3. Compute [Ci, Di] = Commit([vi0, . . . , vit])

4. Compute ski, pki = PaillierKeyGen(1κ) // generate a 2048-bit Paillier key pair

5. Choose a 1024-bit safe prime Pi = 2pi + 1 where both Pi and pi are also prime

6. Choose a 1024-bit safe prime Qi = 2qi + 1 where both Qi and qi are also prime

7. Compute Ñi = Pi ·Qi
8. Choose f

$← ZÑ∗
i

9. Choose α
$← ZÑ∗

i

10. Compute β = α−1 mod piqi
11. Compute h1i = f2 mod Ñi
12. Compute h2i = hα1 mod Ñi
13. Compute πCDL

1i ←ProveCompositeDL(g, q, pi, qi, h1i, h2i, α, Ñi))

14. Compute πCDL
2i ←ProveCompositeDL(g, q, pi, qi, h2i, h1i, β, Ñi))

15. EchoBroadcast Ci, pki, Ñi, h1i, h2i, π
CDL
1i , π

CDL
2i to all other players

16. Return Di, ski, pki, Ñi, h2i, h2i, [vi0, . . . , vit], [xi1, . . . , xin] // The returned values are stored locally for

use in later rounds of the DKG protocol

()←DistKeyGenRound2([Cj , pkj , Ñj , h1j , h2j , π
CDL
1j , π

CDL
2j]j 6=i)

1. For j = [1, . . . , n]

2. If i = j, Continue

3. If VerifyCompositeDL(πCDL
1j , g, q, h1j , h2j , Ñj) = False, Abort

4. If VerifyCompositeDL(πCDL
2j , g, q, h2j , h1j , Ñj) = False, Abort

5. P2PSend xij to player Pj
6. EchoBroadcast Di to all other players

(xi, y, [X1, . . . , Xn])←DistKeyGenRound3([Dj , xji]j 6=i)

1. Set xi = xii
2. For j = [1, . . . , n]

3. If i = j, Continue

4. Compute [vj0, . . . , vjt]←Open(Cj , Dj)

5. If [vj0, . . . , vjt] = ⊥, Abort

6. If FeldmanVerify(g, q, xji, pi, [vj0, . . . , vjt]) = False, Abort

7. Compute xi = xi + xji mod q

8. For j = [0, . . . , t]

9. Set vj = 1

10. For k = [1, . . . , n]

11. Compute vj = vj · vkj in G
12. Set y = v0
13. For j = [1, . . . , n]

14. Set Xj = y

15. For k = [1, . . . , t]

16. Compute ck = pkj mod q

17. Compute Xj = Xj × v
ck
k in G

18. Compute πPSF
i =ProvePSF(ski.N, ski.φ(N), y, g, q, pi)

19. EchoBroadcast πPSF
i to all other players

20. Return xi, y, [X1, . . . , Xn]

()←DistKeyGenRound4([πPSF
j]j 6=i)

1. For j = [1, . . . , n]

2. If i = j, Continue

3. If VerifyPSF(πPSF
j , pkj .N, y, g, q, pj) = False, Abort

4. Broadcast Success

Fig. 5: Threshold distributed key generation protocol.

Threshold ECDSA Pseudocode for Coinbase 11

5 Going from key generation to signing

After the key generation, each player has a key share that will allow them to participate in the
signing protocol. But in a (t, n) configuration, the key generation is done with all n players whereas
only a subset of t+1 players participate in the signing protocol. Once the group of t+1 signers has
been identified, the players must convert their Shamir private key shares that were output during
the signing protocol to additive shares in which the secret is shared additively among the t + 1
active participants. Doing this is straightforward and simply requires the players to multiply their
shares by the Lagrange coefficients of the active signers. We describe the conversion function here.
The function is non-interactive and run locally by each player.

(wi, [W1, . . . ,Wt+1])← ConvertToAdditive(xi, i, [p1, . . . , pt+1], [X1, . . . , Xt+1])

1. For j = [1, . . . , t+ 1] {
2. Set ` = 1

3. For k = [1, . . . , t+ 1] {
4. If j = k, Continue

5. Compute ` = `× pk
pk−pj

mod q

6. }
7. Compute Wj = X`j in G
8. If j = i {
9. Compute wi = xi × ` mod q

10. }
11. }
12. Return wi, [W1, . . . ,Wt+1]

Fig. 6: Converting (t, n) key shares to t+1 additive shares. Each player Pi runs this function
locally. Recall that during the key generation protocol, each player obtains a private key share xi
as well as a public key share Xj for every player Pj . The inputs to the function are xi, the private
key share of Pi, the set of indexes for (t + 1) players that will actively participate in the signing
protocol, as well as their public key shares Xj . The protocol outputs wi the additive private key
share for player Pi as well as Wj = gwj for each other player Pj .

6 Threshold signing protocol

Below, we give pseudocode for the signing protocol. The code is symmetric for every player and
represents the view point of player Pi.

Although the signing protocol doesn’t directly make use of the trusted dealer, the protocol will
differ slightly depending on whether a trusted dealer or a DKG was used for the key generation.
In particular, having a dealer generated trusted parameters during the key generation protocol
simplifies the protocol as it gives a universal set of proof parameters that all players trust. In the
absence of a trusted dealer, each player generates their own proof parameters for the zero knowledge
proofs (i.e. Ñ , h1, h2) during the DKG. When proving a statement to other players, player Pi thus
needs to generate a unique proof for each player using the parameters that are provided by and
trusted by that player. If there is a trusted dealer, however, all players can use the same proving
parameters, reducing the number of proofs.

We note that in the pseudocode we mix together the networking code (i.e. calls to Broadcast
and Send) together with the cryptographic code. When organizing the actual code though, it is
probably simpler to separate these functionalities by having the cryptographic functions return
both the values to store locally and the values to send, and have the calling code take care of the
networking/storage.

12

6.1 Threshold signing with a trusted dealer

We first present the threshold signing protocol that is used for instances in which a trusted dealer
generated the key and dealt shares to the players.

Threshold ECDSA Pseudocode for Coinbase 13

(ki, γi, Di, ci, ri)←SignRound1(wi, [W1, . . . ,Wt+1], g, q, pki, i, Ñ, h1, h2) // the function parameters are output during

KeyGen

1. Choose ki
$← Zq // Zq are the integers from 0 to q − 1

2. Choose γi
$← Zq

3. Compute Γi = gγi in G
4. Compute [Ci, Di] = Commit(Γi)

5. Compute (ci, ri) = PaillierEncryptAndReturnRandomness(pki, ki)

6. Compute πRange1
i = MtAProveRange1(g, q, pki, Ñ, h1, h2, ki, ci, ri)

7. Broadcast (Ci, ci, π
Range1
i) to all other players

8. Return ki, γi, Di, ci, ri // The returned values are stored locally for use in later rounds of the signing protocol

[Cj , βji, νji]j 6=i ←SignRound2([Cj , (cj , π
Range1
j)]j 6=i) // The Cj values are received now, but used in subsequent rounds

1. For j = [1, . . . , t+ 1]

2. If i = j, Continue

3. If MtAVerifyRange1(πRange1
j , g, q, Ñ, h1, h2, cj) = False, Abort

4. Compute (cγji, βji, π
Range2
ji) = MtAResponse(γi, g, q, pkj , Ñ, h1, h2, cj)

5. Compute (cwji, νji, π
Range3
ji) = MtAResponse wc(wi,Wi, g, q, pkj , Ñ, h1, h2, cj)

6. P2PSend(cγji, c
w
ji, π

Range2
ji , πRange3

ji) to player Pj
7. Return [Cj , βji, νji]j 6=i

(δi, σi)←SignRound3([cγij , c
w
ij , π

Range2
ij , πRange3

ij]j 6=i)

1. Compute δi = kiγi mod q

2. Compute σi = kiwi mod q

3. For j = [1, . . . , t+ 1]

4. If i = j, Continue

5. Compute αij =MtAFinalize(g, q, ski, pki, Ñ, h1, h2, ci, c
γ
ij , π

Range2
ij)

6. If αij = ⊥, Abort // αij = ⊥ if proof verification failed

7. Compute µij =MtAFinalize wc(g, q, ski, pki, Ñ, h1, h2, ci, c
w
ij , π

Range3
ij ,Wj)

8. If µij = ⊥, Abort // µij = ⊥ if proof verification failed

9. Compute δi = δi + αij + βji mod q

10. Compute σi = σi + µij + νji mod q

11. Broadcast δi to all other players

12. Return δi, σi
δ ←SignRound4([δj]j 6=i)

1. Set δ = δi
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute δ = δ + δj mod q

5. Broadcast Di to all other players

6. Return δ

(r, R̄i)←SignRound5([Dj]j 6=i)

1. Compute R = gγi in G
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute Γj = Open(Cj , Dj)

5. If Γj = ⊥, Abort

6. Else Compute R = R · Γj in G
7. Compute R = Rδ

−1
in G

8. Set r = Rx // Rx denotes the x coordinate of the elliptic curve point R

9. Compute R̄i = Rki

10. Compute πkCONSISTi =ProvePDL(g, q, R, pki, Ñ, h1, h2, ki, R̄i, ci, ri)

11. Broadcast (R̄i, π
kCONSIST
i) to all other players

12. Return r, R̄i
si ←SignRound6(M, [Rj , π

kCONSIST
j]j 6=i)

1. Set V = R̄i
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. If VerifyPDL(πkCONSISTj , g, q, R, pkj , Ñ, h1, h2, cj , R̄j) = False, Abort

5. Compute V = V · R̄j in G
6. If V 6= g, Abort

7. Compute m = H(M) ∈ Zq // Hash the message with the hash function used by the centralized ECDSA signer/verifier

8. Compute si = mki + rσi mod q

9. Broadcast si to all other players

10. Return si
σ ← SignOutput([sj]j 6=i)

1. Set s = si
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute s = s+ sj mod q

5. Set σ = (r, s)

6. If ECDSAVerify(y, σ,M) = False, Abort

7. Return σ

Fig. 7: ECDSA threshold signing protocol in the presence of a trusted dealer.

14

6.2 Threshold signing in the presence of a DKG

We now present the modified signing protocol when a DKG is used. The protocol is mostly the
same as the prior one with the exception that proofs now need to be tailored to each player so that
they can verify them with their own parameters.

(ki, γi, Di, ci, ri)←SignRound1(wi, g, q, pki, i, [Ñj , h1j , h2j]j∈[1,t+1]) // the function parameters are output during Key-

Gen

1. Choose ki
$← Zq // Zq are the integers from 0 to q − 1

2. Choose γi
$← Zq

3. Compute Γi = gγi in G
4. Compute [Ci, Di] = Commit(Γi)

5. Compute (ci, ri) = PaillierEncryptAndReturnRandomness(pki, ki)

6. For j = [1, . . . , t+ 1]

7. If i = j, Continue

8. Compute πRange1
ij = MtAProveRange1(g, q, pki, Ñj , h1j , h2j , ki, ci, ri)

9. P2PSend πRange1
ij to player Pj

10. Broadcast (Ci, ci) to all other players

11. Return ki, γi, Di, ci, ri // The returned values are stored locally for use in later rounds of the signing protocol

[Cj , βji, νji]j 6=i ←SignRound2([Cj , (cj , π
Range1
ji)]j 6=i) // The Cj values are received now, but used in subsequent rounds

1. For j = [1, . . . , t+ 1]

2. If i = j, Continue

3. If MtAVerifyRange1(πRange1
ji , g, q, Ñi, h1i, h2i, cj) = False, Abort

4. Compute (cγji, βji, π
Range2
ji) = MtAResponse(γi, g, q, pkj , Ñj , h1j , h2j , cj)

5. Compute (cwji, νji, π
Range3
ji) = MtAResponse wc(wi,Wi, g, q, pkj , Ñj , h1j , h2j , cj)

6. P2PSend(cγji, c
w
ji, π

Range2
ji , πRange3

ji) to player Pj
7. Return [Cj , βji, νji]j 6=i

(δi, σi)←SignRound3([cγij , c
w
ij , π

Range2
ij , πRange3

ij]j 6=i)

1. Compute δi = kiγi mod q

2. Compute σi = kiwi mod q

3. For j = [1, . . . , t+ 1]

4. If i = j, Continue

5. Compute αij =MtAFinalize(g, q, ski, pki, Ñi, h1i, h2i, ci, c
γ
ij , π

Range2
ij)

6. If αij = ⊥, Abort // αij = ⊥ if proof verification failed

7. Compute µij =MtAFinalize wc(g, q, ski, pki, Ñi, h1i, h2i, ci, c
w
ij , π

Range3
ij ,Wj)

8. If µij = ⊥, Abort // µij = ⊥ if proof verification failed

9. Compute δi = δi + αij + βji mod q

10. Compute σi = σi + µij + νji mod q

11. Broadcast δi to all other players

12. Return δi, σi
δ ←SignRound4([δj]j 6=i)

1. Set δ = δi
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute δ = δ + δj mod q

5. Broadcast Di to all other players

6. Return δ

Threshold ECDSA Pseudocode for Coinbase 15

(r, R̄i)←SignRound5([Dj]j 6=i)

1. Compute R = gγi in G
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute Γj = Open(Cj , Dj)

5. If Γj = ⊥, Abort

6. Else Compute R = R · Γj in G
7. Compute R = Rδ

−1
in G

8. Set r = Rx // Rx denotes the x coordinate of the elliptic curve point R

9. Compute R̄i = Rki

10. For j = [1, . . . , t+ 1]

11. If i = j, Continue

12. Compute πkCONSISTij =ProvePDL(g, q, R, pki, Ñj , h1j , h2j , ki, R̄i, ci, ri)

13. P2PSend πkCONSISTij to player Pj
14. Broadcast R̄i to all other players

15. Return r, R̄i
si ←SignRound6(M, [Rj , π

kCONSIST
ji]j 6=i)

1. Set V = R̄i
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. If VerifyPDL(πkCONSISTji , g, q, R, pkj , Ñi, h1i, h2i, cj , R̄j) = False, Abort

5. Compute V = V · R̄j in G
6. If V 6= g, Abort

7. Compute m = H(M) ∈ Zq // Hash the message with the hash function used by the centralized ECDSA signer/verifier

8. Compute si = mki + rσi mod q

9. Broadcast si to all other players

10. Return si
σ ← SignOutput([sj]j 6=i)

1. Set s = si
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. Compute s = s+ sj mod q

5. Set σ = (r, s)

6. If ECDSAVerify(y, σ,M) = False, Abort

7. Return σ

Fig. 8: The ECDSA threshold signing protocol in the presence of a DKG.

7 One round signing

Notice that in the pseudocode above, the message M is first input to the SignRound6 function.
To achieve non-interactive signing, the players simply run the first five rounds of the protocol
offline, and indeed they can run many such instantiations in parallel (see introduction regarding
concurrent security in our protocol). Then later upon receiving the message to sign, they can
complete the protocol by beginning from SignRound6, leading to only a single round in which
every player broadcasts a single message.

Indeed, when executing the protocol in the manner, even part of SignRound6 can be performed
during the pre-processing phase, and doing so will require the players to store less information for
the online phase. We now break up SignRound6 into two functions: one which can be run offline
during the pre-processing, and one which is message dependent.

16

r, ki, σi ←SignRound6Offline([Rj , π
kCONSIST
ji]j 6=i)

1. Set V = R̄i
2. For j = [1, . . . , t+ 1]

3. If i = j, Continue

4. If VerifyPDL(πkCONSISTj , g, q, R, pkj , Ñi, h1i, h2i, cj , R̄j) = False, Abort

5. Compute V = V · R̄j in G
6. If V 6= g, Abort

7. Return r, ki, σi
si ←SignRound6Online(M, r, ki, σi)

1. Compute m = H(M) ∈ Zq // Hash the message with the hash function used by the centralized ECDSA signer/verifier

2. Compute si = mki + rσi mod q

3. Broadcast si to all other players

4. Return si

Fig. 9: Modification for one round signing. To achieve one round signing, the first five rounds
and part of the sixth round can be run during an offline message-independent pre-processing phase.
Here we split SignRound6 into two functions showing which parts can be run during pre-processing,
and which must be run online once the message is known. Notice that the values returned by
SignRound6Offline are the values that must be stored persistently for the online phase, and indeed
these are listed as function parameters to SignRound6Online. We use the color orange to denote
pseudocode that only applies for the DKG setting, although the difference is quite minor in the
functions shown here.

To execute the protocol with one online round, the first five rounds as well as SignRound6Offline
are run during a pre-processing phase. Then, during the online phase, only SignRound6Online and
SignOutput are run. Notice that the only values that need to be kept for the online round are
r, ki, σi. All other values can be discarded.

Keeping state. We stress that just like during the fully online protocol, we require an independent
execution of the protocol for each generated signature. The values r, ki, σi must only be ever used in
one call of the signing protocol (and even if the protocol aborts, these values must not be re-used).

For safety, we’ve presented the protocol such that the pre-processing phase is done with a
specific set of t + 1 signers. This minimizes the chance that a pre-processed value tuple will be
accidentally re-used since every signer needs to participate and thus they cannot be partitioned
such that different subgroups re-use a tuple. Nevertheless, much care should be taken so that every
signers discards the tuple after it is used (no matter whether a signature was successfully generated
or the protocol aborted).

8 Multiplicative-to-Additive Share Conversion Protocol (MtA)

Perhaps the most involved part of the signing protocol is the sub-protocol for converting multiplica-
tive secret shares to additive shares of their product. We present the details of the MtA protocol
here as well as complete pseudocode.

The setting consists of two players, P1 and P2, who hold multiplicative shares of a secret x. In
particular, P1 holds a share a ∈ Zq, and P2 holds a secret share b ∈ Zq such that x = ab mod q. The
goal of the MtA protocol is to convert these multiplicative shares into additive shares. P1 receives
private output α ∈ Zq and P2 receives private output β ∈ Zq such that α+ β = x = ab mod q.

In the basic MtA protocol, the player’s inputs are not verified, and indeed the players can cause
the protocol to produce an incorrect output by inputting the wrong values â, b̂. In the case that
B = gb is public, the protocol can be enhanced to include an extra check that ensures that P2

inputs the correct value b = logg(B). This enhanced protocol is denoted as MtAwc (for MtA “with
check”).

Threshold ECDSA Pseudocode for Coinbase 17

In the protocol, P1 first encrypts the value a under its own key and sends the ciphertext c1 to
P2. P2 then uses the homomorphic property of the encryption scheme to multiply its value b into
the ciphertext c1 and add a mask β′ resulting in a new ciphertext c2 that it sends back to P1. P1

decrypts the ciphertext to reveal its share α, and P2 sets its share to β = −β′.
Note that α = PaillierDecrypt(pk1, c2) = a · b+ β′ and thus α+ (β) = a · b as desired.

8.1 MtA and MtAwc initiation

In the first phase of the MtA protocol the initiator encrypts its message a and sends the ciphertext
c together with a range proof πRange1 to the other player.

In this document, we present the range proof here as a sub-function, but we implement the
Paillier encryption of the first message directly into the first round of the signing protocol (i.e.
SignRound1). We do this primarily for clarity and the ability to write generic functions that will
work both for the dealer and dealerless protocols, since in the dealerless version of our protocol we
require a single ciphertext for all players, but a unique proof for every other player.

We now present pseudocode for the prover and verifier functions for the initiator’s range proof.
As one of the inputs to both MtAProveRange1/MtAVerifyRange1, the prover’s Paillier’s public

key is supplied. Similarly, in MtAResponse/MtAProveRange2/MtAVerifyRange2 the verifier’s public
key is supplied. In practice this is N , but for clarity, we refer to it as pk in the function header and
use the notation pk.N when accessing N to demonstrate that N is stored as part of the respective
player’s public key.

π ← MtAProveRange1(g, q, pk, Ñ, h1, h2, a, c, r)

1. Set N = pk.N

2. Choose α
$← Zq3

3. Choose β
$← Z∗N

4. Choose γ
$← Zq3Ñ

5. Choose ρ
$← ZqÑ

6. Compute z = ha1h
ρ
2 mod Ñ

7. Compute u = (N + 1)αβN mod N2

8. Compute w = hα1 h
γ
2 mod Ñ

9. Compute e = FS-HASH(g, q, pk, Ñ, h1, h2, c, z, u, w)

10. Compute s = reβ mod N

11. Compute s1 = ea+ α // computed over the integers

12. Compute s2 = eρ+ γ // computed over the integers

13. Set π = [z, e, s, s1, s2]

14. Return π

True/False←MtAVerifyRange1(π = [z, e, s, s1, s2]), g, q, pk, Ñ, h1, h2, c)

1. Set N = pk.N

2. If s1 > q3, Return False // Check range

3. Compute û = (N + 1)s1sNc−e mod N2

4. Compute ŵ = h
s1
1 h

s2
2 z−e mod Ñ

5. Compute ê = FS-HASH(g, q, pk, Ñ, h1, h2, c, z, û, ŵ)

6. If ê 6= e, Return False

7. Return True

Fig. 10: Initiator proof in the MtA and MtAwc protocols. This proof is run by the initiator
and is identical in both the MtA and MtAwc protocols.

8.2 MtA Response

We now describe the MtA/MtAwc procedures for the respondent that is executed upon receiving
the proof and ciphertext from the initiator. The respondent first verifies the received proof (using
the procedure from Section 8.1) and then crafts its own ciphertext as well as its own proof using

18

the MtAResponse and MtAResponse wc functions. The respondent’s functions for MtA and MtAwc
are quite similar but subtly different. To avoid duplicating text, we mark in blue the parts of the
protocol that are only run during MtAwc.

(c2, β, π
Range2)← MtAResponse wc(b, B,g, q, pk, Ñ, h1, h2, c1)

1. Compute cb = PaillierMultiply(pk, b, c1)

2. Set N = pk.N

3. Choose β′
$← ZN

4. Compute (cβ , rβ) = PaillierEncryptAndReturnRandomness(pk, β′)

5. Compute c2 = PaillierAdd(pk, cb, cβ)

6. Compute β = −β′ mod q

7. Compute πRange2 = MtAProveRange2 wc (g, q, pk, Ñ, h1, h2, b, β
′, rβ , c1, c2, B)

8. Return c2, β, π
Range2

Fig. 11: The MtA and MtAwc response function. This function is run by the respondent in
the MtA protocol after successfully verifying the range proof sent by the initiator. By running this
function, the respondent obtains the ciphertext c2 and the range proof πRange2 that he sends back to
the initiator as well as the private additive share β which is kept secret and not sent. The protocols
for MtA and MtAwc are nearly identical with the only different being that in MtA, the caller invokes
the MtAProveRange2 sub-function, whereas in MtAwc, the caller invokes the MtAProveRange2 wc
sub-function, which takes an extra parameter: B = gb. To avoid duplicating text, we mark in blue
the parts of the protocol that are only run during MtAwc.

8.3 The Respondent’s zero knowledge proof

We now present the proving and verification pseudocode for the zero knowledge proofs run by the
respondent. As before, we mark in blue the parts of the protocol that are only run during MtAwc.
We use the notation from [3] for this proof, but note that x in this proof corresponds to b in the
protocol, X corresponds to B, and y corresponds to β.

Threshold ECDSA Pseudocode for Coinbase 19

π ←MtAProveRange2 wc(g, q, pk, Ñ, h1, h2, x, y, r, c1, c2, X)

1. Set N = pk.N

2. Choose α
$← Zq3

3. Choose ρ
$← ZqÑ

4. Choose ρ′
$← Zq3Ñ

5. Choose σ
$← ZqÑ

6. Choose β
$← Z∗N

7. Choose γ
$← Z∗N

8. Choose τ
$← ZqÑ

9. Compute u = gα

10. Compute z = hx1h
ρ
2 mod Ñ

11. Compute z′ = hα1 h
ρ′
2 mod Ñ

12. Compute t = hy1h
σ
2 mod Ñ

13. Compute v = cα1 (N + 1)γβN mod N2

14. Compute w = hγ1h
τ
2 mod Ñ

15. Compute e = FS-HASH(g, q, pk, Ñ, h1, h2, X, c1, c2, u, z, z
′, t, v, w)

16. Computes s = reβ mod N

17. Compute s1 = ex+ α // computed over the integers

18. Compute s2 = eρ+ ρ′ // computed over the integers

19. Compute t1 = ey + γ // computed over the integers

20. Compute t2 = eσ + τ // computed over the integers

21. Set π = [z, z′, t, e, s, s1, s2, t1, t2]

22. Return π

True/False← MtAVerifyRange2 wc(π = [z, z′, t, e, s, s1, s2, t1, t2], g, q, pk, Ñ, h1, h2, c1, c2, X)

1. Set N = pk.N

2. If s1 > q3, Return False // check range

3. Compute s′1 = s1 mod q

4. Compute û = gs
′
1 ·X−e in G

5. Compute ẑ′ = (h1)s1 · (h2)s2z−e mod Ñ

6. Compute v̂ = (c1)s1 · sN · (N + 1)t1 · c−e2 mod N2

7. Compute ŵ = (h1)t1 · (h2)t2 · t−e mod Ñ

8. Compute ê = FS-HASH(g, q, pk, Ñ, h1, h2, X, c1, c2, û, z, ẑ′, t, v̂, ŵ)

9. If ê 6= e, Return False

10. Return True

Fig. 12: Respondent proof in the MtA and MtAwc protocols. This figure shows the proofs for
both the MtA and MtAwc protocol. In both, the proof includes a range proof, but in the MtAwc
there is an additional check for consistency with X = gx. The proofs are mostly the same, with
some extra checks added in the MtAwc checks. For simplicity, we have marked the items in blue
that are only run during MtAwc and omitted during MtA.

8.4 The initiator’s finalization function

In the last phase of the MtA/MtAwc protocols, upon receiving the respondent’s message, the
initiator checks the zero knowledge proof and calculates its own additive secret share. We present
the pseudocode for this here.

α← MtAFinalize wc(g, q, sk, pk, Ñ, h1, h2, c1, c2, π
Range2, B)

1. If MtAVerifyRange2 wc(πRange2, g, q, pk, Ñ, h1, h2, c1, c2, B) = False, Return ⊥
2. Compute α = Decrypt(sk, c2) mod q

3. Return α

Fig. 13: The MtA finalization function. Upon receiving (c2, π
Range2), P1 calls MtAFinalize to

check the proof’s validity compute its additive share α.

20

Confidential. Please do not share this document outside of Coinbase.

9 The zero knowledge proof in SignRound5

In SignRound5 the protocol requires a zero knowledge proof of consistency between a discrete
logarithm and a value encrypted in a Paillier ciphertext. In the protocol this is used to prove that
the value ki that a player input to the MtA protocol is the same ki that they used to compute
R̄ = Rki .We present the pseudocode for this proof here. In particular, we need to show consistency
between a ciphertext c such that (c, r) = PaillierEncryptAndReturnRandomness(pk, x) and a curve
point X such that X = Rx.

π ←ProvePDL(g, q, R, pk, Ñ, h1, h2, x,X, c, r)

1. Set N = pk.N

2. Choose α
$← Zq3

3. Choose β
$← Z∗N

4. Choose γ
$← Zq3Ñ

5. Choose ρ
$← ZqÑ

6. Compute u = Rα in G

7. Compute z = hx1h
ρ
2 mod Ñ

8. Compute v = (N + 1)αβN mod N2

9. Compute w = hα1 h
γ
2 mod Ñ

10. Compute e = FS-HASH(pk, Ñ, h1, h2, g, q, R,X, c, u, z, v, w)

11. Computes s = reβ mod N

12. Compute s1 = ex+ α // computed over the integers

13. Compute s2 = eρ+ γ // computed over the integers

14. Set π = [z, e, s, s1, s2]

15. Return π

True/False← VerifyPDL(π = [z, e, s, s1, s2], g, q, R, pk, Ñ, h1, h2, c,X)

1. Set N = pk.N

2. If s1 > q3, Return False // check range

3. Compute s′1 = s1 mod q

4. Compute û = Rs
′
1 ·X−e in G

5. Compute v̂ = sN · (N + 1)s1 · c−e mod N2

6. Compute ŵ = (h1)s1 · (h2)s2 · z−e mod Ñ

7. Compute ê = FS-HASH(pk, Ñ, h1, h2, g, q, R,X, c, û, z, v̂, ŵ)

8. If ê 6= e, Return False

9. Return True

Fig. 14: Consistency proof between a Paillier encrypted value and a discrete loga-
rithm. This figure shows the proof of consistency between a ciphertext c such that (c, r) =
PaillierEncryptAndReturnRandomness(pk, x) and a curve point X such that X = Rx.

10 The zero knowledge proofs used in the DKG

In the DKG setting, we cannot trust that the Paillier keys and proof parameters were honestly
generated, and we therefore require two additional proofs, the details of which we present here.

10.1 Proof that a Paillier modulus is square free

We now present the proof that a Paillier modulus is square free using the proof from [5]. We
note that the proof in its interactive setting begins with a set of challenges xi ∈ Z∗N supplied by
the verifier. However, we want this proof to be non-interactive and thus the prover will supply
these challenges. To achieve this, we use a technique that is similar to Fiat-Shamir except since

Threshold ECDSA Pseudocode for Coinbase 21

these challenges are the very first message of the protocol, we must use some external input to
the random oracle. In our protocol, we will use y, the ECDSA public key as well as the player’s
index pi, and indeed this is the reason that in the DKG we delay providing this proof until the
final round when y has been computed.

The exact parameters of the proof can be fine-tuned and have a computation-communication
cost trade-off. In particular, the soundness of the proof is related to the smallest prime factors of
the modulus, and in particular is 1/d where d is the smallest prime factor. Thus, the proof begins by
checking that there are “small” factors, and the number of parallel instances needed for soundness
directly relates to how high we check. For a security parameter of κ, where we check for prime
factors up to t, we need ` parallel instances where ` is the smallest integer such that t` > 2κ. You
can choose any suitable parameters here, but in the pseudocode, we use 128-bit security. t = 1000
and ` = 13.

π ←ProvePSF(N,φ(N), y, g, q, pi)

1. Set ` = 13

2. Compute M = N−1 mod φ(N)

3. Compute [x1, . . . , x`]← GenerateChallenges(g, q, y, pi, `)

4. For j = [1, . . . , `]

5. Compute yi = xMi mod φ(N)

6. Set π = [y1, . . . , yt]

7. Return π

True/False← VerifyPSF(π = [y1, . . . , yt], N, y, g, q, pi)

1. Set ` = 13

2. Set t = 1000

3. If q|N , Return False

4. Compute [x1, . . . , x`]← GenerateChallenges(g, q, y, pi, `)

5. For j = [1, . . . , `]

6. If yNi 6= xi mod N , Return False

7. Return True

[x1, . . . , x`]← GenerateChallenges(g, q, y, pi, `)

1. Set b = |N | // bit length of N

2. Set h = output bit-length of FS-HASH

3. Compute s = db/he // number of hash outputs required to obtain b bits

4. Set j = 0

5. Set m = 0

6. While j ≤ `
7. For k = [1, . . . , s]

8. Compute ejk = FS-HASH(g, q, y, pi, j, k,m)

9. Set xj = ej1|| · · · ||ejs // where || denotes concatenation

10. Truncate ej to b bits //Remove the excess s · h− b bits

11. If xj ∈ Z∗N
12. Set j = j + 1

13. Set m = 0

14. Else

15. Set m = m+ 1

16. Return [x1, . . . , x`]

Fig. 15: Zero-knowledge proof that a Paillier modulus is square free.

10.2 Proof that h1, h2 generate the same group

Also in the DKG, we will need to prove that h1 and h2 generate the same group modulo Ñ . To
achieve this, we will run two proofs in parallel showing knowledge of the discrete log of h1 with
respect to h2 and vice versa. This proof uses binary challenges, and we will do 128 instances in
parallel to achieve soundness.

22

π ←ProveCompositeDL(g, q, pi, qi, h1, h2, x,N))

1. Set ` = 128

2. For i = [1, . . . , `]

3. Choose αi
$← Zpiqi

4. Compute ui = hαi mod N

5. Compute e = FS-HASH(g, q,N, h1, h2, [u1, . . . , u`])

6. For i = [1, . . . , `]

7. Compute si = αi + eix mod pq // where ei denotes the ith bit of e

8. Set π = [(u1, s1), . . . , (u`, s`)]

9. Return π

True/False← VerifyCompositeDL(π = [(u1, s1), . . . , (u`, s`)], g, q, h1, h2, N)

1. Set ` = 128

2. Compute e = FS-HASH(g, q,N, h1, h2, [u1, . . . , u`])

3. For i = [1, . . . , `]

4. If h
si
1 6= uih

ei
2 , Return False // where ei denotes the ith bit of e

5. Return True

Fig. 16: Proof of knowledge of a discrete log modulo a composite.

11 Resharing: updating the DKG

In this section, we describe a simple interactive procedure for updating the threshold key generation
and “handing-off” the key shares to a new committee. This function is quite flexible and it allows
for increasing/decreasing both the threshold (i.e., t) as well as the number of signers (i.e., n).
The crucial property of the resharing procedure is that while the underlying sharing of the key is
updated, the key itself remains the same.

It must be stressed that any resharing/hand-off procedure necessarily requires that (a suffi-
ciently large subset of) the old signers delete their key shares. In particular, the procedure de-
scribed here shows how to securely hand off the key to the old signers, but there’s no way that we
could possibly “invalidate” the old shares other than deleting them.

The procedure described here assumes that there is an existing key that is shared among n
players P1, . . . ,Pn with a signing threshold of t, and these players will hand off the key to a new
set of ñ players, P̃1, . . . , P̃ñ using a signing threshold of t̃. The two sets of players may be entirely
disjoint representing a change of the entire set of players, or more likely there will be overlap
between the two sets with some new players added or some old players removed. It is also possible
that the two sets of players are identical, and this procedure is run just to change the threshold t.

Notice that parts of the distributed key generation that don’t directly relate to the shared
ECDSA key (e.g. generating proof parameters and Paillier keys) are also run in the resharing
procedure mostly unmodified.

Note that during the procedure, the entire set of new players P̃1, . . . , P̃ñ must be active, but
only a threshold number of old players P1, . . . ,Pt̃+1 participate. The pseudocode below will have
two types of functions – those that are run by the old set of players which will be prepended with
Old and those run by the new set of players which will be prepended with New . We assume that
every player on the old set and the new set can communicate via point-to-point channels as well
as via broadcasting a message to either or both sets as will be specified in the pseudocode via
EchoBroadcastToNew and EchoBroadcastToOld.

Threshold ECDSA Pseudocode for Coinbase 23

(Di, [vi0, . . . , vit̃], [si1, . . . , siñ])←Old ReshareRound1(g, q, y, i, xi, [X1, . . . , Xt+1], [p1, . . . , pt+1], [p̃1, . . . , p̃ñ], t̃)

1. Compute wi, ← ConvertToAdditive(xi, i, [p1, . . . , pt+1], [X1, . . . , Xt+1])

2. Compute [vi0, . . . , vit̃], [si1, . . . , siñ]← FeldmanShare(g, wi, t̃, q, [p̃1, . . . , p̃ñ])

3. Compute [Ci, Di] = Commit([vi0, . . . , vit̃])

4. EchoBroadcast Ci to all players in the new set [P̃1, . . . , P̃ñ]

5. Return Di, [vi0, . . . , vit̃], [si1, . . . , siñ]

(s̃ki, p̃ki, Ñi, h̃1i, h̃2i)←New ReshareRound1(y, [Cj]j∈[1,t+1], g, q, i, [p1, . . . , pt+1], [p̃1, . . . , p̃ñ])

1. Compute s̃ki, p̃ki = PaillierKeyGen(1κ) // generate a 2048-bit Paillier key pair

2. Choose a 1024-bit safe prime P̃i = 2p̃i + 1 where both P̃i and p̃i are also prime

3. Choose a 1024-bit safe prime Q̃i = 2q̃i + 1 where both Q̃i and q̃i are also prime

4. Compute Ñi = P̃i · Q̃i
5. Choose f

$← ZÑ∗
i

6. Choose α
$← ZÑ∗

i

7. Compute β = α−1 mod p̃iq̃i
8. Compute h̃1i = f2 mod Ñi
9. Compute h̃2i = h̃α1 mod Ñi

10. Compute πCDL
1i ←ProveCompositeDL(g, q, p̃i, q̃i, h̃1i, h̃2i, α, Ñi))

11. Compute πCDL
2i ←ProveCompositeDL(g, q, p̃i, q̃i, h̃2i, h̃1i, β, Ñi))

12. Compute πPSF
i =ProvePSF(s̃ki.N, s̃ki.φ(N), y, g, q, pi)

13. EchoBroadcast p̃ki, Ñi, h̃1i, h̃2i, π
CDL
1i , π

CDL
2i , π

PSF
i to all other players in the new set [P̃1, . . . , P̃ñ]

14. EchoBroadcast CommitmentsReceivedi to all other players in the old set [P1, . . . , Pn]

15. Return s̃ki, p̃ki, Ñi, h̃2i, h̃2i

()←Old ReshareRound2([CommitmentsReceivedj]j∈[1,ñ],j 6=i)

1. For j = [1, . . . , ñ]

2. If i = j, Continue

3. P2PSend sij to player P̃j from the new set

4. EchoBroadcast Di to all to all players in the new set [P̃1, . . . , P̃ñ]

(x̃i, [X̃1, . . . , X̃ñ])←New ReshareRound2([p̃kj , Ñj , h̃1j , h̃2j , π
CDL
1j , π

CDL
2j , π

PSF
i]j∈[1,ñ],j 6=i, [sji, Dj]j∈[1,t+1])

1. For j = [1, . . . , ñ]

2. If i = j, Continue

3. If VerifyCompositeDL(πCDL
1j , g, q, h1j , h2j , Ñj) = False, Abort

4. If VerifyCompositeDL(πCDL
2j , g, q, h2j , h1j , Ñj) = False, Abort

5. If VerifyPSF(πPSF
j , pkj .N, y, g, q, pj) = False, Abort

6. Set x̃i = 0

7. For j = [1, . . . , t+ 1]

8. Compute [vj0, . . . , vjt̃]←Open(Cj , Dj)

9. If [vj0, . . . , vjt̃] = ⊥, Abort

10. If FeldmanVerify(g, q, sji, p̃i, [vj0, . . . , vjt̃]) = False, Abort

11. Compute x̃i = x̃i + sji mod q

12. For j = [0, . . . , t̃]

13. Set vj = 1

14. For k = [1, . . . , t+ 1]

15. Compute vj = vj · vkj in G
16. If y 6= v0, Abort

17. For j = [1, . . . , ñ]

18. Set X̃j = y

19. For k = [1, . . . , t̃]

20. Compute ck = (̃pj)
k mod q

21. Compute X̃j = X̃j × (vk)ck in G
22. If Aborted = false, Set statusi = success

23. EchoBroadcast statusi to all other players in the new set [P̃1, . . . , P̃ñ]

24. Return x̃i, [X̃1, . . . , X̃ñ]

()←New ReshareRound3([statusj]j∈[1,ñ])

1. For j = [1, . . . , ñ]

2. If statusj 6= success, Abort

3. Broadcast statusi to all other players in the old set [P1, . . . , Pn]

()←Old ReshareRound3([statusj]j∈[1,ñ])

1. For j = [1, . . . , ñ]

2. If statusj 6= success, Abort

3. Else Delete xi

Fig. 17: The resharing protocol for updating the threshold set and parameters

24

References

1. Boneh, D.: Digital signature standard. In: Encyclopedia of cryptography and security, pp. 347–347.
Springer (2011)

2. Doerner, J., Kondi, Y., Lee, E., et al.: Secure two-party threshold ecdsa from ecdsa assumptions. In:
IEEE Symposium on Security and Privacy. p. 0. IEEE (2018)

3. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ecdsa with fast trustless setup. In: Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security. pp. 1179–1194. ACM
(2018)

4. Gennaro, R., Goldfeder, S.: One round threshold ecdsa with identifiable abort. In: IACR eprint Report
2020/540 (2020)

5. Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof
system for quasi-safe prime products. In: In Proc. of the 5th ACM Conference on Computer and Com-
munications Security (CCS-98. Citeseer (1998)

6. Kravitz, D.W.: Digital signature algorithm (Jul 27 1993), uS Patent 5,231,668
7. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: International

Conference on the Theory and Applications of Cryptographic Techniques. pp. 223–238. Springer (1999)
8. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

