mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-23 22:25:19 +00:00
537 lines
19 KiB
Go
537 lines
19 KiB
Go
package shuffle_test
|
|
|
|
import (
|
|
"fmt"
|
|
"math/big"
|
|
"testing"
|
|
|
|
"filippo.io/edwards25519"
|
|
"github.com/stretchr/testify/assert"
|
|
"source.quilibrium.com/quilibrium/monorepo/node/crypto/shuffle"
|
|
)
|
|
|
|
func TestGeneratePermutationMatrix(t *testing.T) {
|
|
m := shuffle.GeneratePermutationMatrix(6)
|
|
for _, x := range m {
|
|
ySum := byte(0x00)
|
|
for _, y := range x {
|
|
ySum += y.Bytes()[0]
|
|
}
|
|
|
|
assert.Equal(t, ySum, byte(0x01))
|
|
}
|
|
|
|
for x := 0; x < len(m); x++ {
|
|
xSum := byte(0x00)
|
|
|
|
for y := 0; y < len(m); y++ {
|
|
xSum += m[y][x].Bytes()[0]
|
|
}
|
|
|
|
assert.Equal(t, xSum, byte(0x01))
|
|
}
|
|
}
|
|
|
|
func verifyLagrange(t *testing.T, shares []*edwards25519.Scalar, expected *edwards25519.Scalar, total, threshold int) {
|
|
var result *edwards25519.Scalar
|
|
|
|
for i := 1; i <= total-threshold+1; i++ {
|
|
var reconstructedSum *edwards25519.Scalar
|
|
|
|
for j := 0; j < threshold; j++ {
|
|
oneLENumBytes := shuffle.BigIntToLEBytes(big.NewInt(1))
|
|
coeffNum, _ := edwards25519.NewScalar().SetCanonicalBytes(oneLENumBytes)
|
|
coeffDenom, _ := edwards25519.NewScalar().SetCanonicalBytes(oneLENumBytes)
|
|
|
|
for k := 0; k < threshold; k++ {
|
|
if j != k {
|
|
ikBytes := shuffle.BigIntToLEBytes(big.NewInt(int64(i + k)))
|
|
ijBytes := shuffle.BigIntToLEBytes(big.NewInt(int64(i + j)))
|
|
ikScalar, _ := edwards25519.NewScalar().SetCanonicalBytes(ikBytes)
|
|
ijScalar, _ := edwards25519.NewScalar().SetCanonicalBytes(ijBytes)
|
|
|
|
coeffNum.Multiply(coeffNum, ikScalar)
|
|
ikScalar.Subtract(ikScalar, ijScalar)
|
|
coeffDenom.Multiply(coeffDenom, ikScalar)
|
|
}
|
|
}
|
|
|
|
coeffDenom.Invert(coeffDenom)
|
|
coeffNum.Multiply(coeffNum, coeffDenom)
|
|
reconstructedFrag := edwards25519.NewScalar().Multiply(coeffNum, shares[i+j-1])
|
|
|
|
if reconstructedSum == nil {
|
|
reconstructedSum = reconstructedFrag
|
|
} else {
|
|
reconstructedSum.Add(reconstructedSum, reconstructedFrag)
|
|
}
|
|
}
|
|
|
|
if result == nil {
|
|
result = reconstructedSum
|
|
assert.Equal(t, expected.Bytes(), result.Bytes())
|
|
} else if result.Equal(reconstructedSum) == 0 {
|
|
fmt.Println("mismatched reconstruction")
|
|
t.FailNow()
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestGenerateShamirMatrix(t *testing.T) {
|
|
m := shuffle.GeneratePermutationMatrix(6)
|
|
sm := shuffle.ShamirSplitMatrix(m, 10, 3)
|
|
for xi, x := range sm {
|
|
for yi, y := range x {
|
|
verifyLagrange(t, y, m[xi][yi], 10, 3)
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestMatrixDotProduct(t *testing.T) {
|
|
zeroBytes := shuffle.BigIntToLEBytes(big.NewInt(0))
|
|
oneBytes := shuffle.BigIntToLEBytes(big.NewInt(1))
|
|
twoBytes := shuffle.BigIntToLEBytes(big.NewInt(2))
|
|
threeBytes := shuffle.BigIntToLEBytes(big.NewInt(3))
|
|
fourBytes := shuffle.BigIntToLEBytes(big.NewInt(4))
|
|
|
|
zero, _ := edwards25519.NewScalar().SetCanonicalBytes(zeroBytes)
|
|
one, _ := edwards25519.NewScalar().SetCanonicalBytes(oneBytes)
|
|
two, _ := edwards25519.NewScalar().SetCanonicalBytes(twoBytes)
|
|
three, _ := edwards25519.NewScalar().SetCanonicalBytes(threeBytes)
|
|
four, _ := edwards25519.NewScalar().SetCanonicalBytes(fourBytes)
|
|
|
|
aMatrix := [][]*edwards25519.Scalar{
|
|
{two, two},
|
|
{zero, three},
|
|
{zero, four},
|
|
}
|
|
bMatrix := [][]*edwards25519.Scalar{
|
|
{two, one, two},
|
|
{three, two, four},
|
|
}
|
|
|
|
abMatrix := shuffle.GenerateDotProduct(aMatrix, bMatrix)
|
|
assert.Equal(t, byte(0x0a), abMatrix[0][0].Bytes()[0])
|
|
assert.Equal(t, byte(0x06), abMatrix[0][1].Bytes()[0])
|
|
assert.Equal(t, byte(0x0c), abMatrix[0][2].Bytes()[0])
|
|
assert.Equal(t, byte(0x09), abMatrix[1][0].Bytes()[0])
|
|
assert.Equal(t, byte(0x06), abMatrix[1][1].Bytes()[0])
|
|
assert.Equal(t, byte(0x0c), abMatrix[1][2].Bytes()[0])
|
|
assert.Equal(t, byte(0x0c), abMatrix[2][0].Bytes()[0])
|
|
assert.Equal(t, byte(0x08), abMatrix[2][1].Bytes()[0])
|
|
assert.Equal(t, byte(0x10), abMatrix[2][2].Bytes()[0])
|
|
}
|
|
|
|
func TestGenerateRandomBeaverTripleMatrixShares(t *testing.T) {
|
|
beaverTripleShares := shuffle.GenerateRandomBeaverTripleMatrixShares(6, 10, 3)
|
|
|
|
uMatrixShares := beaverTripleShares[0]
|
|
vMatrixShares := beaverTripleShares[1]
|
|
uvMatrixShares := beaverTripleShares[2]
|
|
|
|
uMatrix := shuffle.InterpolateMatrixShares(uMatrixShares, []int{1, 2, 3})
|
|
vMatrix := shuffle.InterpolateMatrixShares(vMatrixShares, []int{1, 2, 3})
|
|
uvMatrix := shuffle.InterpolateMatrixShares(uvMatrixShares, []int{1, 2, 3})
|
|
|
|
for x := 0; x < len(uMatrixShares); x++ {
|
|
for y := 0; y < len(uMatrixShares[0]); y++ {
|
|
verifyLagrange(t, uMatrixShares[x][y], uMatrix[x][y], 10, 3)
|
|
verifyLagrange(t, vMatrixShares[x][y], vMatrix[x][y], 10, 3)
|
|
verifyLagrange(t, uvMatrixShares[x][y], uvMatrix[x][y], 10, 3)
|
|
}
|
|
}
|
|
|
|
uvCheck := shuffle.GenerateDotProduct(uMatrix, vMatrix)
|
|
assert.Equal(t, uvMatrix, uvCheck)
|
|
}
|
|
|
|
func TestPermutationMatrix(t *testing.T) {
|
|
permutationMatrix1 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix2 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix3 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix4 := shuffle.GeneratePermutationMatrix(6)
|
|
|
|
permutationMatrix := shuffle.GenerateDotProduct(permutationMatrix1, permutationMatrix2)
|
|
permutationMatrix = shuffle.GenerateDotProduct(permutationMatrix, permutationMatrix3)
|
|
permutationMatrix = shuffle.GenerateDotProduct(permutationMatrix, permutationMatrix4)
|
|
|
|
one, _ := edwards25519.NewScalar().SetCanonicalBytes(shuffle.BigIntToLEBytes(big.NewInt(1)))
|
|
for x := 0; x < 6; x++ {
|
|
sumX := edwards25519.NewScalar()
|
|
|
|
for y := 0; y < 6; y++ {
|
|
sumX.Add(sumX, permutationMatrix[x][y])
|
|
}
|
|
|
|
assert.Equal(t, sumX, one)
|
|
}
|
|
|
|
for y := 0; y < 6; y++ {
|
|
sumY := edwards25519.NewScalar()
|
|
|
|
for x := 0; x < 6; x++ {
|
|
sumY.Add(sumY, permutationMatrix[x][y])
|
|
}
|
|
|
|
assert.Equal(t, sumY, one)
|
|
}
|
|
}
|
|
|
|
func TestPermutationSharing(t *testing.T) {
|
|
permutationMatrix1 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix2 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix3 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrix4 := shuffle.GeneratePermutationMatrix(6)
|
|
permutationMatrixShares1 := shuffle.ShamirSplitMatrix(permutationMatrix1, 4, 3)
|
|
permutationMatrixShares2 := shuffle.ShamirSplitMatrix(permutationMatrix2, 4, 3)
|
|
permutationMatrixShares3 := shuffle.ShamirSplitMatrix(permutationMatrix3, 4, 3)
|
|
permutationMatrixShares4 := shuffle.ShamirSplitMatrix(permutationMatrix4, 4, 3)
|
|
|
|
inverseShareMatrix1 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseShareMatrix2 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseShareMatrix3 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseShareMatrix4 := make([][][]*edwards25519.Scalar, 4)
|
|
|
|
for i := 0; i < 4; i++ {
|
|
inverseShareMatrix1[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix2[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix3[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix4[i] = make([][]*edwards25519.Scalar, 6)
|
|
|
|
for x := 0; x < 6; x++ {
|
|
inverseShareMatrix1[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix2[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix3[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseShareMatrix4[i][x] = make([]*edwards25519.Scalar, 6)
|
|
|
|
for y := 0; y < 6; y++ {
|
|
inverseShareMatrix1[i][x][y] = permutationMatrixShares1[x][y][i]
|
|
inverseShareMatrix2[i][x][y] = permutationMatrixShares2[x][y][i]
|
|
inverseShareMatrix3[i][x][y] = permutationMatrixShares3[x][y][i]
|
|
inverseShareMatrix4[i][x][y] = permutationMatrixShares4[x][y][i]
|
|
}
|
|
}
|
|
}
|
|
|
|
beaverTripleShares1 := shuffle.GenerateRandomBeaverTripleMatrixShares(6, 4, 3)
|
|
beaverTripleShares2 := shuffle.GenerateRandomBeaverTripleMatrixShares(6, 4, 3)
|
|
beaverTripleShares3 := shuffle.GenerateRandomBeaverTripleMatrixShares(6, 4, 3)
|
|
|
|
beaverTriplesAShares1 := beaverTripleShares1[0]
|
|
beaverTriplesBShares1 := beaverTripleShares1[1]
|
|
beaverTriplesABShares1 := beaverTripleShares1[2]
|
|
beaverTriplesAShares2 := beaverTripleShares2[0]
|
|
beaverTriplesBShares2 := beaverTripleShares2[1]
|
|
beaverTriplesABShares2 := beaverTripleShares2[2]
|
|
beaverTriplesAShares3 := beaverTripleShares3[0]
|
|
beaverTriplesBShares3 := beaverTripleShares3[1]
|
|
beaverTriplesABShares3 := beaverTripleShares3[2]
|
|
|
|
inverseBeaverTriplesAShares1 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesBShares1 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesABShares1 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesAShares2 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesBShares2 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesABShares2 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesAShares3 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesBShares3 := make([][][]*edwards25519.Scalar, 4)
|
|
inverseBeaverTriplesABShares3 := make([][][]*edwards25519.Scalar, 4)
|
|
|
|
for i := 0; i < 4; i++ {
|
|
inverseBeaverTriplesAShares1[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares1[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares1[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesAShares2[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares2[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares2[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesAShares3[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares3[i] = make([][]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares3[i] = make([][]*edwards25519.Scalar, 6)
|
|
|
|
for x := 0; x < 6; x++ {
|
|
inverseBeaverTriplesAShares1[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares1[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares1[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesAShares2[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares2[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares2[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesAShares3[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesBShares3[i][x] = make([]*edwards25519.Scalar, 6)
|
|
inverseBeaverTriplesABShares3[i][x] = make([]*edwards25519.Scalar, 6)
|
|
|
|
for y := 0; y < 6; y++ {
|
|
inverseBeaverTriplesAShares1[i][x][y] = beaverTriplesAShares1[x][y][i]
|
|
inverseBeaverTriplesBShares1[i][x][y] = beaverTriplesBShares1[x][y][i]
|
|
inverseBeaverTriplesABShares1[i][x][y] = beaverTriplesABShares1[x][y][i]
|
|
inverseBeaverTriplesAShares2[i][x][y] = beaverTriplesAShares2[x][y][i]
|
|
inverseBeaverTriplesBShares2[i][x][y] = beaverTriplesBShares2[x][y][i]
|
|
inverseBeaverTriplesABShares2[i][x][y] = beaverTriplesABShares2[x][y][i]
|
|
inverseBeaverTriplesAShares3[i][x][y] = beaverTriplesAShares3[x][y][i]
|
|
inverseBeaverTriplesBShares3[i][x][y] = beaverTriplesBShares3[x][y][i]
|
|
inverseBeaverTriplesABShares3[i][x][y] = beaverTriplesABShares3[x][y][i]
|
|
}
|
|
}
|
|
}
|
|
|
|
es1 := make([][][]*edwards25519.Scalar, 6)
|
|
fs1 := make([][][]*edwards25519.Scalar, 6)
|
|
es2 := make([][][]*edwards25519.Scalar, 6)
|
|
fs2 := make([][][]*edwards25519.Scalar, 6)
|
|
es3 := make([][][]*edwards25519.Scalar, 6)
|
|
fs3 := make([][][]*edwards25519.Scalar, 6)
|
|
|
|
for x := 0; x < 6; x++ {
|
|
es1[x] = make([][]*edwards25519.Scalar, 6)
|
|
fs1[x] = make([][]*edwards25519.Scalar, 6)
|
|
es2[x] = make([][]*edwards25519.Scalar, 6)
|
|
fs2[x] = make([][]*edwards25519.Scalar, 6)
|
|
es3[x] = make([][]*edwards25519.Scalar, 6)
|
|
fs3[x] = make([][]*edwards25519.Scalar, 6)
|
|
|
|
for y := 0; y < 6; y++ {
|
|
es1[x][y] = make([]*edwards25519.Scalar, 4)
|
|
fs1[x][y] = make([]*edwards25519.Scalar, 4)
|
|
es2[x][y] = make([]*edwards25519.Scalar, 4)
|
|
fs2[x][y] = make([]*edwards25519.Scalar, 4)
|
|
es3[x][y] = make([]*edwards25519.Scalar, 4)
|
|
fs3[x][y] = make([]*edwards25519.Scalar, 4)
|
|
|
|
for i := 0; i < 4; i++ {
|
|
es1[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix1[i][x][y], inverseBeaverTriplesAShares1[i][x][y])
|
|
fs1[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix2[i][x][y], inverseBeaverTriplesBShares1[i][x][y])
|
|
es2[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix2[i][x][y], inverseBeaverTriplesAShares2[i][x][y])
|
|
fs2[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix3[i][x][y], inverseBeaverTriplesBShares2[i][x][y])
|
|
es3[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix3[i][x][y], inverseBeaverTriplesAShares3[i][x][y])
|
|
fs3[x][y][i] = edwards25519.NewScalar().Subtract(inverseShareMatrix4[i][x][y], inverseBeaverTriplesBShares3[i][x][y])
|
|
}
|
|
}
|
|
}
|
|
// e = a - u
|
|
// f = b - v
|
|
// (a - u)(b - v) = -ab + ub + av - uv + (ab-av) + (ab - ub) + uv
|
|
|
|
e1 := shuffle.InterpolateMatrixShares(es1, []int{1, 2, 3, 4})
|
|
f1 := shuffle.InterpolateMatrixShares(fs1, []int{1, 2, 3, 4})
|
|
e2 := shuffle.InterpolateMatrixShares(es2, []int{1, 2, 3, 4})
|
|
f2 := shuffle.InterpolateMatrixShares(fs2, []int{1, 2, 3, 4})
|
|
e3 := shuffle.InterpolateMatrixShares(es3, []int{1, 2, 3, 4})
|
|
f3 := shuffle.InterpolateMatrixShares(fs3, []int{1, 2, 3, 4})
|
|
|
|
// mul(a, b) => <e> = <a> - <u>, <f> = <b> - <v>, <c> = -i * e * f + f * <a> + e * <b> + <z>
|
|
|
|
ef1 := shuffle.GenerateDotProduct(e1, f1)
|
|
ef2 := shuffle.GenerateDotProduct(e2, f2)
|
|
ef3 := shuffle.GenerateDotProduct(e3, f3)
|
|
fa1 := make([][][]*edwards25519.Scalar, 4)
|
|
fa2 := make([][][]*edwards25519.Scalar, 4)
|
|
fa3 := make([][][]*edwards25519.Scalar, 4)
|
|
eb1 := make([][][]*edwards25519.Scalar, 4)
|
|
eb2 := make([][][]*edwards25519.Scalar, 4)
|
|
eb3 := make([][][]*edwards25519.Scalar, 4)
|
|
cs1 := make([][][]*edwards25519.Scalar, 4)
|
|
cs2 := make([][][]*edwards25519.Scalar, 4)
|
|
cs3 := make([][][]*edwards25519.Scalar, 4)
|
|
// cs := make([][][]*edwards25519.Scalar, 4)
|
|
inverseCS1 := make([][][]*edwards25519.Scalar, 6)
|
|
inverseCS3 := make([][][]*edwards25519.Scalar, 6)
|
|
|
|
for i := 0; i < 4; i++ {
|
|
fa1[i] = shuffle.GenerateDotProduct(inverseShareMatrix1[i], f1)
|
|
eb1[i] = shuffle.GenerateDotProduct(e1, inverseShareMatrix2[i])
|
|
fa2[i] = shuffle.GenerateDotProduct(inverseShareMatrix2[i], f2)
|
|
eb2[i] = shuffle.GenerateDotProduct(e2, inverseShareMatrix3[i])
|
|
fa3[i] = shuffle.GenerateDotProduct(inverseShareMatrix3[i], f3)
|
|
eb3[i] = shuffle.GenerateDotProduct(e3, inverseShareMatrix4[i])
|
|
cs1[i] = shuffle.AddMatrices(shuffle.ScalarMult(-1, ef1), fa1[i], eb1[i], inverseBeaverTriplesABShares1[i])
|
|
cs2[i] = shuffle.AddMatrices(shuffle.ScalarMult(-1, ef2), fa2[i], eb2[i], inverseBeaverTriplesABShares2[i])
|
|
cs3[i] = shuffle.AddMatrices(shuffle.ScalarMult(-1, ef3), fa3[i], eb3[i], inverseBeaverTriplesABShares3[i])
|
|
}
|
|
|
|
for x := 0; x < 6; x++ {
|
|
inverseCS1[x] = make([][]*edwards25519.Scalar, 6)
|
|
inverseCS3[x] = make([][]*edwards25519.Scalar, 6)
|
|
for y := 0; y < 6; y++ {
|
|
inverseCS1[x][y] = make([]*edwards25519.Scalar, 4)
|
|
inverseCS3[x][y] = make([]*edwards25519.Scalar, 4)
|
|
for i := 0; i < 4; i++ {
|
|
inverseCS1[x][y][i] = cs1[i][x][y]
|
|
inverseCS3[x][y][i] = cs3[i][x][y]
|
|
}
|
|
}
|
|
}
|
|
|
|
c1 := shuffle.InterpolateMatrixShares(inverseCS1, []int{1, 2, 3, 4})
|
|
c3 := shuffle.InterpolateMatrixShares(inverseCS3, []int{1, 2, 3, 4})
|
|
c := shuffle.GenerateDotProduct(c1, c3)
|
|
ab := shuffle.GenerateDotProduct(permutationMatrix1, permutationMatrix2)
|
|
abc := shuffle.GenerateDotProduct(ab, permutationMatrix3)
|
|
abcd := shuffle.GenerateDotProduct(abc, permutationMatrix4)
|
|
|
|
for x := 0; x < 6; x++ {
|
|
for y := 0; y < 6; y++ {
|
|
assert.ElementsMatch(t, c[x][y].Bytes(), abcd[x][y].Bytes())
|
|
}
|
|
}
|
|
}
|
|
|
|
// func TestIlanBeaverMultiMatrixSharing(t *testing.T) {
|
|
// fmt.Println("start")
|
|
// start := time.Now()
|
|
// ri := [65][][][]*edwards25519.Scalar{}
|
|
// rj := [65][][][]*edwards25519.Scalar{}
|
|
|
|
// next := time.Now()
|
|
// diff := next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("generating random and inverse matrices")
|
|
// var wg sync.WaitGroup
|
|
|
|
// for i := 0; i <= 64; i++ {
|
|
// wg.Add(1)
|
|
|
|
// i := i
|
|
|
|
// go func() {
|
|
// defer wg.Done()
|
|
// rs := crypto.GenerateRandomMatrixAndInverseShares(80, 4, 3)
|
|
// ri[i] = make([][][]*edwards25519.Scalar, 4)
|
|
// rj[i] = make([][][]*edwards25519.Scalar, 4)
|
|
// for j := 0; j < 4; j++ {
|
|
// ri[i][j] = make([][]*edwards25519.Scalar, 80)
|
|
// rj[i][j] = make([][]*edwards25519.Scalar, 80)
|
|
// for x := 0; x < 80; x++ {
|
|
// ri[i][j][x] = make([]*edwards25519.Scalar, 80)
|
|
// rj[i][j][x] = make([]*edwards25519.Scalar, 80)
|
|
// for y := 0; y < 80; y++ {
|
|
// ri[i][j][x][y] = rs[0][x][y][j]
|
|
// rj[i][j][x][y] = rs[1][x][y][j]
|
|
// }
|
|
// }
|
|
// }
|
|
// }()
|
|
// }
|
|
|
|
// wg.Wait()
|
|
|
|
// next = time.Now()
|
|
// diff = next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("generating permutation matrices")
|
|
// rxr := [64][][][]*edwards25519.Scalar{}
|
|
|
|
// for i := 1; i <= 64; i++ {
|
|
// wg.Add(1)
|
|
|
|
// i := i
|
|
|
|
// go func() {
|
|
// defer wg.Done()
|
|
// x := crypto.GeneratePermutationMatrix(80)
|
|
// xs := crypto.ShamirSplitMatrix(x, 4, 3)
|
|
// ixs := make([][][]*edwards25519.Scalar, 4)
|
|
// rxr[i-1] = make([][][]*edwards25519.Scalar, 4)
|
|
// for j := 0; j < 4; j++ {
|
|
// ixs[j] = make([][]*edwards25519.Scalar, 80)
|
|
// rxr[i-1][j] = make([][]*edwards25519.Scalar, 80)
|
|
// for x := 0; x < 80; x++ {
|
|
// ixs[j][x] = make([]*edwards25519.Scalar, 80)
|
|
// rxr[i-1][j][x] = make([]*edwards25519.Scalar, 80)
|
|
// for y := 0; y < 80; y++ {
|
|
// ixs[j][x][y] = xs[x][y][j]
|
|
// }
|
|
// }
|
|
// }
|
|
// for j := 0; j < 4; j++ {
|
|
// rxrij := crypto.GenerateDotProduct(ri[i-1][j], ixs[j])
|
|
// rxr[i-1][j] = crypto.GenerateDotProduct(rxrij, rj[i][j])
|
|
// }
|
|
// }()
|
|
// }
|
|
|
|
// wg.Wait()
|
|
|
|
// next = time.Now()
|
|
// diff = next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("swapping elements for interpolation")
|
|
// irxr := [64][][][]*edwards25519.Scalar{}
|
|
// for i := 0; i < 64; i++ {
|
|
// wg.Add(1)
|
|
|
|
// i := i
|
|
|
|
// go func() {
|
|
// defer wg.Done()
|
|
// irxr[i] = make([][][]*edwards25519.Scalar, 80)
|
|
// for x := 0; x < 80; x++ {
|
|
// irxr[i][x] = make([][]*edwards25519.Scalar, 80)
|
|
// for y := 0; y < 80; y++ {
|
|
// irxr[i][x][y] = make([]*edwards25519.Scalar, 4)
|
|
// for j := 0; j < 4; j++ {
|
|
// irxr[i][x][y][j] = rxr[i][j][x][y]
|
|
// }
|
|
// }
|
|
// }
|
|
// }()
|
|
// }
|
|
|
|
// wg.Wait()
|
|
|
|
// rxri := [][]*edwards25519.Scalar{}
|
|
|
|
// next = time.Now()
|
|
// diff = next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("interpolating")
|
|
|
|
// for i := 0; i < 64; i++ {
|
|
// next := crypto.InterpolateMatrixShares(irxr[i], []int{1, 2, 3})
|
|
// if i == 0 {
|
|
// rxri = next
|
|
// } else {
|
|
// rxri = crypto.GenerateDotProduct(rxri, next)
|
|
// }
|
|
// }
|
|
|
|
// rpms := make([][][]*edwards25519.Scalar, 4)
|
|
// next = time.Now()
|
|
// diff = next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("generating intermediary dot products")
|
|
|
|
// for i := 1; i <= 4; i++ {
|
|
// rpms[i-1] = crypto.GenerateDotProduct(crypto.GenerateDotProduct(rj[0][i-1], rxri), ri[64][i-1])
|
|
// }
|
|
|
|
// final := make([][][]*edwards25519.Scalar, 80)
|
|
// for x := 0; x < 80; x++ {
|
|
// final[x] = make([][]*edwards25519.Scalar, 80)
|
|
// for y := 0; y < 80; y++ {
|
|
// final[x][y] = make([]*edwards25519.Scalar, 4)
|
|
// for j := 0; j < 4; j++ {
|
|
// final[x][y][j] = rpms[j][x][y]
|
|
// }
|
|
// }
|
|
// }
|
|
|
|
// next = time.Now()
|
|
// diff = next.Sub(start)
|
|
// fmt.Println(diff)
|
|
// start = next
|
|
// fmt.Println("final interpolation")
|
|
// rpm := crypto.InterpolateMatrixShares(final, []int{1, 2, 3})
|
|
|
|
// for x := 0; x < 80; x++ {
|
|
// for y := 0; y < 80; y++ {
|
|
// fmt.Printf("%x, ", rpm[x][y].Bytes()[0])
|
|
// }
|
|
// fmt.Println()
|
|
// }
|
|
// t.Fail()
|
|
// }
|