mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2024-12-26 00:25:17 +00:00
201 lines
7.3 KiB
Go
201 lines
7.3 KiB
Go
package kos
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"testing"
|
|
|
|
"github.com/stretchr/testify/require"
|
|
|
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/core/curves"
|
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/ot/base/simplest"
|
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/ot/ottest"
|
|
)
|
|
|
|
func TestBinaryMult(t *testing.T) {
|
|
for i := 0; i < 100; i++ {
|
|
temp := make([]byte, 32)
|
|
_, err := rand.Read(temp)
|
|
require.NoError(t, err)
|
|
expected := make([]byte, 32)
|
|
copy(expected, temp)
|
|
// this test is based on Fermat's little theorem.
|
|
// the multiplicative group of units of a finite field has order |F| - 1
|
|
// (in fact, it's necessarily cyclic; see e.g. https://math.stackexchange.com/a/59911, but this test doesn't rely on that fact)
|
|
// thus raising any element to the |F|th power should yield that element itself.
|
|
// this is a good test because it relies on subtle facts about the field structure, and will fail if anything goes wrong.
|
|
for j := 0; j < 256; j++ {
|
|
expected = binaryFieldMul(expected, expected)
|
|
}
|
|
require.Equal(t, temp, expected)
|
|
}
|
|
}
|
|
|
|
func TestCOTExtension(t *testing.T) {
|
|
const (
|
|
// below are the "cryptographic parameters", including computational and statistical,
|
|
// as well as the cOT block size parameters, which depend on these in a pre-defined way.
|
|
|
|
// Kappa is the computational security parameter.
|
|
Kappa = 256
|
|
|
|
// KappaBytes is same as Kappa // 8, but avoids cpu division.
|
|
KappaBytes = Kappa >> 3
|
|
|
|
s = 80 // statistical security parameter.
|
|
|
|
// L is the batch size used in the cOT functionality.
|
|
L = 2*Kappa + 2*s
|
|
|
|
// COtBlockSizeBytes is same as L // 8, but avoids cpu division.
|
|
COtBlockSizeBytes = L >> 3
|
|
|
|
// OtWidth is the number of scalars processed per "slot" of the cOT. by definition of this parameter,
|
|
// for each of the receiver's choice bits, the sender will provide `OTWidth` scalars.
|
|
// in turn, both the sender and receiver will obtain `OTWidth` shares _per_ slot / bit of the cOT.
|
|
// by definition of the cOT, these "vectors of" scalars will add (componentwise) to the sender's original scalars.
|
|
OtWidth = 2
|
|
|
|
kappaOT = Kappa + s
|
|
lPrime = L + kappaOT // length of pseudorandom seed expansion, used within cOT protocol
|
|
cOtExtendedBlockSizeBytes = lPrime >> 3
|
|
)
|
|
|
|
curveInstances := []*curves.Curve{
|
|
curves.K256(),
|
|
curves.P256(),
|
|
}
|
|
for _, curve := range curveInstances {
|
|
uniqueSessionId := [simplest.DigestSize]byte{}
|
|
_, err := rand.Read(uniqueSessionId[:])
|
|
require.NoError(t, err)
|
|
baseOtSenderOutput, baseOtReceiverOutput, err := ottest.RunSimplestOT(curve, Kappa, uniqueSessionId)
|
|
require.NoError(t, err)
|
|
for i := 0; i < Kappa; i++ {
|
|
require.Equal(t, baseOtReceiverOutput.OneTimePadDecryptionKey[i], baseOtSenderOutput.OneTimePadEncryptionKeys[i][baseOtReceiverOutput.RandomChoiceBits[i]])
|
|
}
|
|
|
|
sender := NewCOtSender(Kappa, s, baseOtReceiverOutput, curve)
|
|
receiver := NewCOtReceiver(Kappa, s, baseOtSenderOutput, curve)
|
|
choice := [COtBlockSizeBytes]byte{} // receiver's input, namely choice vector. just random
|
|
_, err = rand.Read(choice[:])
|
|
require.NoError(t, err)
|
|
input := make([][]curves.Scalar, L) // sender's input, namely integer "sums" in case w_j == 1.
|
|
for i := 0; i < L; i++ {
|
|
input[i] = make([]curves.Scalar, OtWidth)
|
|
for j := 0; j < OtWidth; j++ {
|
|
input[i][j] = curve.Scalar.Random(rand.Reader)
|
|
require.NoError(t, err)
|
|
}
|
|
}
|
|
firstMessage, err := receiver.Round1Initialize(uniqueSessionId, choice[:])
|
|
require.NoError(t, err)
|
|
responseTau, err := sender.Round2Transfer(uniqueSessionId, input, firstMessage)
|
|
require.NoError(t, err)
|
|
err = receiver.Round3Transfer(responseTau)
|
|
require.NoError(t, err)
|
|
for j := 0; j < L; j++ {
|
|
bit := simplest.ExtractBitFromByteVector(choice[:], j) == 1
|
|
for k := 0; k < OtWidth; k++ {
|
|
temp := sender.OutputAdditiveShares[j][k].Add(receiver.OutputAdditiveShares[j][k])
|
|
if bit {
|
|
require.Equal(t, temp, input[j][k])
|
|
} else {
|
|
require.Equal(t, temp, curve.Scalar.Zero())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestCOTExtensionStreaming(t *testing.T) {
|
|
const (
|
|
// below are the "cryptographic parameters", including computational and statistical,
|
|
// as well as the cOT block size parameters, which depend on these in a pre-defined way.
|
|
|
|
// Kappa is the computational security parameter.
|
|
Kappa = 256
|
|
|
|
// KappaBytes is same as Kappa // 8, but avoids cpu division.
|
|
KappaBytes = Kappa >> 3
|
|
|
|
s = 80 // statistical security parameter.
|
|
|
|
// L is the batch size used in the cOT functionality.
|
|
L = 2*Kappa + 2*s
|
|
|
|
// COtBlockSizeBytes is same as L // 8, but avoids cpu division.
|
|
COtBlockSizeBytes = L >> 3
|
|
|
|
// OtWidth is the number of scalars processed per "slot" of the cOT. by definition of this parameter,
|
|
// for each of the receiver's choice bits, the sender will provide `OTWidth` scalars.
|
|
// in turn, both the sender and receiver will obtain `OTWidth` shares _per_ slot / bit of the cOT.
|
|
// by definition of the cOT, these "vectors of" scalars will add (componentwise) to the sender's original scalars.
|
|
OtWidth = 2
|
|
|
|
kappaOT = Kappa + s
|
|
lPrime = L + kappaOT // length of pseudorandom seed expansion, used within cOT protocol
|
|
cOtExtendedBlockSizeBytes = lPrime >> 3
|
|
)
|
|
curve := curves.K256()
|
|
hashKeySeed := [simplest.DigestSize]byte{}
|
|
_, err := rand.Read(hashKeySeed[:])
|
|
require.NoError(t, err)
|
|
baseOtReceiver, err := simplest.NewReceiver(curve, Kappa, hashKeySeed)
|
|
require.NoError(t, err)
|
|
sender := NewCOtSender(Kappa, s, baseOtReceiver.Output, curve)
|
|
baseOtSender, err := simplest.NewSender(curve, Kappa, hashKeySeed)
|
|
require.NoError(t, err)
|
|
receiver := NewCOtReceiver(Kappa, s, baseOtSender.Output, curve)
|
|
|
|
// first run the seed OT
|
|
senderPipe, receiverPipe := simplest.NewPipeWrappers()
|
|
errorsChannel := make(chan error, 2)
|
|
go func() {
|
|
errorsChannel <- simplest.SenderStreamOTRun(baseOtSender, senderPipe)
|
|
}()
|
|
go func() {
|
|
errorsChannel <- simplest.ReceiverStreamOTRun(baseOtReceiver, receiverPipe)
|
|
}()
|
|
for i := 0; i < 2; i++ {
|
|
require.Nil(t, <-errorsChannel)
|
|
}
|
|
for i := 0; i < Kappa; i++ {
|
|
require.Equal(t, baseOtReceiver.Output.OneTimePadDecryptionKey[i], baseOtSender.Output.OneTimePadEncryptionKeys[i][baseOtReceiver.Output.RandomChoiceBits[i]])
|
|
}
|
|
|
|
// begin test of cOT extension. first populate both parties' inputs randomly
|
|
choice := make([]byte, COtBlockSizeBytes) // receiver's input, namely choice vector. just random
|
|
_, err = rand.Read(choice[:])
|
|
require.NoError(t, err)
|
|
input := make([][]curves.Scalar, L) // sender's input, namely integer "sums" in case w_j == 1. random for the test
|
|
for i := 0; i < L; i++ {
|
|
input[i] = make([]curves.Scalar, OtWidth)
|
|
for j := 0; j < OtWidth; j++ {
|
|
input[i][j] = curve.Scalar.Random(rand.Reader)
|
|
require.NoError(t, err)
|
|
}
|
|
}
|
|
|
|
// now actually run it, stream-wise
|
|
go func() {
|
|
errorsChannel <- SenderStreamCOtRun(sender, hashKeySeed, input, receiverPipe)
|
|
}()
|
|
go func() {
|
|
errorsChannel <- ReceiverStreamCOtRun(receiver, hashKeySeed, choice, senderPipe)
|
|
}()
|
|
for i := 0; i < 2; i++ {
|
|
require.Nil(t, <-errorsChannel)
|
|
}
|
|
for j := 0; j < L; j++ {
|
|
bit := simplest.ExtractBitFromByteVector(choice[:], j) == 1
|
|
for k := 0; k < OtWidth; k++ {
|
|
temp := sender.OutputAdditiveShares[j][k].Add(receiver.OutputAdditiveShares[j][k])
|
|
if bit {
|
|
require.Equal(t, temp, input[j][k])
|
|
} else {
|
|
require.Equal(t, temp, curve.Scalar.Zero())
|
|
}
|
|
}
|
|
}
|
|
}
|