mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-13 17:25:18 +00:00
506 lines
7.4 KiB
Go
506 lines
7.4 KiB
Go
/*
|
|
* Copyright (c) 2012-2020 MIRACL UK Ltd.
|
|
*
|
|
* This file is part of MIRACL Core
|
|
* (see https://github.com/miracl/core).
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* Finite Field arithmetic Fp^2 functions */
|
|
|
|
/* FP2 elements are of the form a+ib, where i is sqrt(-1) */
|
|
|
|
package bls48581
|
|
|
|
import "source.quilibrium.com/quilibrium/ceremonyclient/ec/bls48581/core"
|
|
|
|
//import "fmt"
|
|
|
|
type FP2 struct {
|
|
a *FP
|
|
b *FP
|
|
}
|
|
|
|
func NewFP2() *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFP()
|
|
F.b = NewFP()
|
|
return F
|
|
}
|
|
|
|
/* Constructors */
|
|
func NewFP2int(a int) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPint(a)
|
|
F.b = NewFP()
|
|
return F
|
|
}
|
|
|
|
func NewFP2ints(a int, b int) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPint(a)
|
|
F.b = NewFPint(b)
|
|
return F
|
|
}
|
|
|
|
func NewFP2copy(x *FP2) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPcopy(x.a)
|
|
F.b = NewFPcopy(x.b)
|
|
return F
|
|
}
|
|
|
|
func NewFP2fps(c *FP, d *FP) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPcopy(c)
|
|
F.b = NewFPcopy(d)
|
|
return F
|
|
}
|
|
|
|
func NewFP2bigs(c *BIG, d *BIG) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPbig(c)
|
|
F.b = NewFPbig(d)
|
|
return F
|
|
}
|
|
|
|
func NewFP2fp(c *FP) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPcopy(c)
|
|
F.b = NewFP()
|
|
return F
|
|
}
|
|
|
|
func NewFP2big(c *BIG) *FP2 {
|
|
F := new(FP2)
|
|
F.a = NewFPbig(c)
|
|
F.b = NewFP()
|
|
return F
|
|
}
|
|
|
|
func NewFP2rand(rng *core.RAND) *FP2 {
|
|
F := NewFP2fps(NewFPrand(rng), NewFPrand(rng))
|
|
return F
|
|
}
|
|
|
|
/* reduce components mod Modulus */
|
|
func (F *FP2) reduce() {
|
|
F.a.reduce()
|
|
F.b.reduce()
|
|
}
|
|
|
|
/* normalise components of w */
|
|
func (F *FP2) norm() {
|
|
F.a.norm()
|
|
F.b.norm()
|
|
}
|
|
|
|
/* test this=0 ? */
|
|
func (F *FP2) iszilch() bool {
|
|
return (F.a.iszilch() && F.b.iszilch())
|
|
}
|
|
|
|
func (F *FP2) islarger() int {
|
|
if F.iszilch() {
|
|
return 0
|
|
}
|
|
cmp := F.b.islarger()
|
|
if cmp != 0 {
|
|
return cmp
|
|
}
|
|
return F.a.islarger()
|
|
}
|
|
|
|
func (F *FP2) ToBytes(bf []byte) {
|
|
var t [int(MODBYTES)]byte
|
|
MB := int(MODBYTES)
|
|
F.b.ToBytes(t[:])
|
|
for i := 0; i < MB; i++ {
|
|
bf[i] = t[i]
|
|
}
|
|
F.a.ToBytes(t[:])
|
|
for i := 0; i < MB; i++ {
|
|
bf[i+MB] = t[i]
|
|
}
|
|
}
|
|
|
|
func FP2_fromBytes(bf []byte) *FP2 {
|
|
var t [int(MODBYTES)]byte
|
|
MB := int(MODBYTES)
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = bf[i]
|
|
}
|
|
tb := FP_fromBytes(t[:])
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = bf[i+MB]
|
|
}
|
|
ta := FP_fromBytes(t[:])
|
|
return NewFP2fps(ta, tb)
|
|
}
|
|
|
|
func (F *FP2) cmove(g *FP2, d int) {
|
|
F.a.cmove(g.a, d)
|
|
F.b.cmove(g.b, d)
|
|
}
|
|
|
|
/* test this=1 ? */
|
|
func (F *FP2) isunity() bool {
|
|
one := NewFPint(1)
|
|
return (F.a.Equals(one) && F.b.iszilch())
|
|
}
|
|
|
|
/* test this=x */
|
|
func (F *FP2) Equals(x *FP2) bool {
|
|
return (F.a.Equals(x.a) && F.b.Equals(x.b))
|
|
}
|
|
|
|
/* extract a */
|
|
func (F *FP2) GetA() *BIG {
|
|
return F.a.redc()
|
|
}
|
|
|
|
/* extract b */
|
|
func (F *FP2) GetB() *BIG {
|
|
return F.b.redc()
|
|
}
|
|
|
|
/* copy this=x */
|
|
func (F *FP2) copy(x *FP2) {
|
|
F.a.copy(x.a)
|
|
F.b.copy(x.b)
|
|
}
|
|
|
|
/* set this=0 */
|
|
func (F *FP2) zero() {
|
|
F.a.zero()
|
|
F.b.zero()
|
|
}
|
|
|
|
/* set this=1 */
|
|
func (F *FP2) one() {
|
|
F.a.one()
|
|
F.b.zero()
|
|
}
|
|
|
|
/* Return sign */
|
|
func (F *FP2) sign() int {
|
|
p1 := F.a.sign()
|
|
p2 := F.b.sign()
|
|
var u int
|
|
if BIG_ENDIAN_SIGN {
|
|
if F.b.iszilch() {
|
|
u = 1
|
|
} else {
|
|
u = 0
|
|
}
|
|
p2 ^= (p1 ^ p2) & u
|
|
return p2
|
|
} else {
|
|
if F.a.iszilch() {
|
|
u = 1
|
|
} else {
|
|
u = 0
|
|
}
|
|
p1 ^= (p1 ^ p2) & u
|
|
return p1
|
|
}
|
|
}
|
|
|
|
/* negate this mod Modulus */
|
|
func (F *FP2) neg() {
|
|
m := NewFPcopy(F.a)
|
|
t := NewFP()
|
|
|
|
m.add(F.b)
|
|
m.neg()
|
|
t.copy(m)
|
|
t.add(F.b)
|
|
F.b.copy(m)
|
|
F.b.add(F.a)
|
|
F.a.copy(t)
|
|
}
|
|
|
|
/* set to a-ib */
|
|
func (F *FP2) conj() {
|
|
F.b.neg()
|
|
F.b.norm()
|
|
}
|
|
|
|
/* this+=a */
|
|
func (F *FP2) add(x *FP2) {
|
|
F.a.add(x.a)
|
|
F.b.add(x.b)
|
|
}
|
|
|
|
/* this-=a */
|
|
func (F *FP2) sub(x *FP2) {
|
|
m := NewFP2copy(x)
|
|
m.neg()
|
|
F.add(m)
|
|
}
|
|
|
|
/* this-=a */
|
|
func (F *FP2) rsub(x *FP2) {
|
|
F.neg()
|
|
F.add(x)
|
|
}
|
|
|
|
/* this*=s, where s is an FP */
|
|
func (F *FP2) pmul(s *FP) {
|
|
F.a.mul(s)
|
|
F.b.mul(s)
|
|
}
|
|
|
|
/* this*=i, where i is an int */
|
|
func (F *FP2) imul(c int) {
|
|
F.a.imul(c)
|
|
F.b.imul(c)
|
|
}
|
|
|
|
/* this*=this */
|
|
func (F *FP2) sqr() {
|
|
w1 := NewFPcopy(F.a)
|
|
w3 := NewFPcopy(F.a)
|
|
mb := NewFPcopy(F.b)
|
|
w1.add(F.b)
|
|
|
|
w3.add(F.a)
|
|
w3.norm()
|
|
F.b.mul(w3)
|
|
|
|
mb.neg()
|
|
F.a.add(mb)
|
|
|
|
w1.norm()
|
|
F.a.norm()
|
|
|
|
F.a.mul(w1)
|
|
}
|
|
|
|
/* this*=y */
|
|
/* Now using Lazy reduction */
|
|
func (F *FP2) mul(y *FP2) {
|
|
|
|
if int64(F.a.XES+F.b.XES)*int64(y.a.XES+y.b.XES) > int64(FEXCESS) {
|
|
if F.a.XES > 1 {
|
|
F.a.reduce()
|
|
}
|
|
if F.b.XES > 1 {
|
|
F.b.reduce()
|
|
}
|
|
}
|
|
|
|
pR := NewDBIG()
|
|
C := NewBIGcopy(F.a.x)
|
|
D := NewBIGcopy(y.a.x)
|
|
p := NewBIGints(Modulus)
|
|
|
|
pR.ucopy(p)
|
|
|
|
A := mul(F.a.x, y.a.x)
|
|
B := mul(F.b.x, y.b.x)
|
|
|
|
C.add(F.b.x)
|
|
C.norm()
|
|
D.add(y.b.x)
|
|
D.norm()
|
|
|
|
E := mul(C, D)
|
|
FF := NewDBIGcopy(A)
|
|
FF.add(B)
|
|
B.rsub(pR)
|
|
|
|
A.add(B)
|
|
A.norm()
|
|
E.sub(FF)
|
|
E.norm()
|
|
|
|
F.a.x.copy(mod(A))
|
|
F.a.XES = 3
|
|
F.b.x.copy(mod(E))
|
|
F.b.XES = 2
|
|
|
|
}
|
|
|
|
/*
|
|
func (F *FP2) pow(b *BIG) {
|
|
w := NewFP2copy(F);
|
|
r := NewFP2int(1)
|
|
z := NewBIGcopy(b)
|
|
for true {
|
|
bt := z.parity()
|
|
z.shr(1)
|
|
if bt==1 {
|
|
r.mul(w)
|
|
}
|
|
if z.iszilch() {break}
|
|
w.sqr()
|
|
}
|
|
r.reduce()
|
|
F.copy(r)
|
|
}
|
|
*/
|
|
func (F *FP2) qr(h *FP) int {
|
|
c := NewFP2copy(F)
|
|
c.conj()
|
|
c.mul(F)
|
|
return c.a.qr(h)
|
|
}
|
|
|
|
/* sqrt(a+ib) = sqrt(a+sqrt(a*a-n*b*b)/2)+ib/(2*sqrt(a+sqrt(a*a-n*b*b)/2)) */
|
|
func (F *FP2) sqrt(h *FP) {
|
|
if F.iszilch() {
|
|
return
|
|
}
|
|
w1 := NewFPcopy(F.b)
|
|
w2 := NewFPcopy(F.a)
|
|
w3 := NewFP()
|
|
w4 := NewFP()
|
|
hint := NewFP()
|
|
w1.sqr()
|
|
w2.sqr()
|
|
w1.add(w2)
|
|
w1.norm()
|
|
|
|
w1 = w1.sqrt(h)
|
|
w2.copy(F.a)
|
|
w3.copy(F.a)
|
|
|
|
w2.add(w1)
|
|
w2.norm()
|
|
w2.div2()
|
|
|
|
w1.copy(F.b)
|
|
w1.div2()
|
|
qr := w2.qr(hint)
|
|
|
|
// tweak hint
|
|
w3.copy(hint)
|
|
w3.neg()
|
|
w3.norm()
|
|
w4.copy(w2)
|
|
w4.neg()
|
|
w4.norm()
|
|
|
|
w2.cmove(w4, 1-qr)
|
|
hint.cmove(w3, 1-qr)
|
|
|
|
F.a.copy(w2.sqrt(hint))
|
|
w3.copy(w2)
|
|
w3.inverse(hint)
|
|
w3.mul(F.a)
|
|
F.b.copy(w3)
|
|
F.b.mul(w1)
|
|
w4.copy(F.a)
|
|
|
|
F.a.cmove(F.b, 1-qr)
|
|
F.b.cmove(w4, 1-qr)
|
|
|
|
/*
|
|
F.a.copy(w2.sqrt(hint))
|
|
w3.copy(w2); w3.inverse(hint)
|
|
w3.mul(F.a)
|
|
F.b.copy(w3); F.b.mul(w1)
|
|
|
|
hint.neg(); hint.norm()
|
|
w2.neg(); w2.norm()
|
|
|
|
w4.copy(w2.sqrt(hint))
|
|
w3.copy(w2); w3.inverse(hint)
|
|
w3.mul(w4)
|
|
w3.mul(w1)
|
|
|
|
F.a.cmove(w3,1-qr)
|
|
F.b.cmove(w4,1-qr)
|
|
*/
|
|
|
|
sgn := F.sign()
|
|
nr := NewFP2copy(F)
|
|
nr.neg()
|
|
nr.norm()
|
|
F.cmove(nr, sgn)
|
|
}
|
|
|
|
/* output to hex string */
|
|
func (F *FP2) ToString() string {
|
|
return ("[" + F.a.ToString() + "," + F.b.ToString() + "]")
|
|
}
|
|
|
|
/* output to hex string */
|
|
func (F *FP2) toString() string {
|
|
return ("[" + F.a.ToString() + "," + F.b.ToString() + "]")
|
|
}
|
|
|
|
/* this=1/this */
|
|
func (F *FP2) inverse(h *FP) {
|
|
F.norm()
|
|
w1 := NewFPcopy(F.a)
|
|
w2 := NewFPcopy(F.b)
|
|
|
|
w1.sqr()
|
|
w2.sqr()
|
|
w1.add(w2)
|
|
w1.inverse(h)
|
|
F.a.mul(w1)
|
|
w1.neg()
|
|
w1.norm()
|
|
F.b.mul(w1)
|
|
}
|
|
|
|
/* this/=2 */
|
|
func (F *FP2) div2() {
|
|
F.a.div2()
|
|
F.b.div2()
|
|
}
|
|
|
|
/* this*=sqrt(-1) */
|
|
func (F *FP2) times_i() {
|
|
z := NewFPcopy(F.a)
|
|
F.a.copy(F.b)
|
|
F.a.neg()
|
|
F.b.copy(z)
|
|
}
|
|
|
|
/* w*=(1+sqrt(-1)) */
|
|
/* where X*2-(2^i+sqrt(-1)) is irreducible for FP4 */
|
|
func (F *FP2) mul_ip() {
|
|
t := NewFP2copy(F)
|
|
i := QNRI
|
|
F.times_i()
|
|
for i > 0 {
|
|
t.add(t)
|
|
t.norm()
|
|
i--
|
|
}
|
|
F.add(t)
|
|
|
|
if TOWER == POSITOWER {
|
|
F.norm()
|
|
F.neg()
|
|
}
|
|
|
|
}
|
|
|
|
/* w/=(2^i+sqrt(-1)) */
|
|
func (F *FP2) div_ip() {
|
|
z := NewFP2ints(1<<uint(QNRI), 1)
|
|
z.inverse(nil)
|
|
F.norm()
|
|
F.mul(z)
|
|
if TOWER == POSITOWER {
|
|
F.neg()
|
|
F.norm()
|
|
}
|
|
}
|