mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-13 09:15:47 +00:00
1075 lines
18 KiB
Go
1075 lines
18 KiB
Go
/*
|
|
* Copyright (c) 2012-2020 MIRACL UK Ltd.
|
|
*
|
|
* This file is part of MIRACL Core
|
|
* (see https://github.com/miracl/core).
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/* MiotCL Weierstrass elliptic curve functions over FP2 */
|
|
|
|
package bls48581
|
|
|
|
//import "fmt"
|
|
|
|
type ECP8 struct {
|
|
x *FP8
|
|
y *FP8
|
|
z *FP8
|
|
}
|
|
|
|
func NewECP8() *ECP8 {
|
|
E := new(ECP8)
|
|
E.x = NewFP8()
|
|
E.y = NewFP8int(1)
|
|
E.z = NewFP8()
|
|
return E
|
|
}
|
|
|
|
/* Test this=O? */
|
|
func (E *ECP8) Is_infinity() bool {
|
|
return E.x.iszilch() && E.z.iszilch()
|
|
}
|
|
|
|
/* copy this=P */
|
|
func (E *ECP8) Copy(P *ECP8) {
|
|
E.x.copy(P.x)
|
|
E.y.copy(P.y)
|
|
E.z.copy(P.z)
|
|
}
|
|
|
|
/* set this=O */
|
|
func (E *ECP8) inf() {
|
|
E.x.zero()
|
|
E.y.one()
|
|
E.z.zero()
|
|
}
|
|
|
|
/* set this=-this */
|
|
func (E *ECP8) neg() {
|
|
E.y.norm()
|
|
E.y.neg()
|
|
E.y.norm()
|
|
}
|
|
|
|
/* Conditional move of Q to P dependant on d */
|
|
func (E *ECP8) cmove(Q *ECP8, d int) {
|
|
E.x.cmove(Q.x, d)
|
|
E.y.cmove(Q.y, d)
|
|
E.z.cmove(Q.z, d)
|
|
}
|
|
|
|
/* Constant time select from pre-computed table */
|
|
func (E *ECP8) selector(W []*ECP8, b int32) {
|
|
MP := NewECP8()
|
|
m := b >> 31
|
|
babs := (b ^ m) - m
|
|
|
|
babs = (babs - 1) / 2
|
|
|
|
E.cmove(W[0], teq(babs, 0)) // conditional move
|
|
E.cmove(W[1], teq(babs, 1))
|
|
E.cmove(W[2], teq(babs, 2))
|
|
E.cmove(W[3], teq(babs, 3))
|
|
E.cmove(W[4], teq(babs, 4))
|
|
E.cmove(W[5], teq(babs, 5))
|
|
E.cmove(W[6], teq(babs, 6))
|
|
E.cmove(W[7], teq(babs, 7))
|
|
|
|
MP.Copy(E)
|
|
MP.neg()
|
|
E.cmove(MP, int(m&1))
|
|
}
|
|
|
|
/* Test if P == Q */
|
|
func (E *ECP8) Equals(Q *ECP8) bool {
|
|
|
|
a := NewFP8copy(E.x)
|
|
b := NewFP8copy(Q.x)
|
|
a.mul(Q.z)
|
|
b.mul(E.z)
|
|
|
|
if !a.Equals(b) {
|
|
return false
|
|
}
|
|
a.copy(E.y)
|
|
b.copy(Q.y)
|
|
a.mul(Q.z)
|
|
b.mul(E.z)
|
|
if !a.Equals(b) {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
/* set to Affine - (x,y,z) to (x,y) */
|
|
func (E *ECP8) Affine() {
|
|
if E.Is_infinity() {
|
|
return
|
|
}
|
|
one := NewFP8int(1)
|
|
if E.z.Equals(one) {
|
|
E.x.reduce()
|
|
E.y.reduce()
|
|
return
|
|
}
|
|
E.z.inverse(nil)
|
|
|
|
E.x.mul(E.z)
|
|
E.x.reduce()
|
|
E.y.mul(E.z)
|
|
E.y.reduce()
|
|
E.z.copy(one)
|
|
}
|
|
|
|
/* extract affine x as FP2 */
|
|
func (E *ECP8) GetX() *FP8 {
|
|
W := NewECP8()
|
|
W.Copy(E)
|
|
W.Affine()
|
|
return W.x
|
|
}
|
|
|
|
/* extract affine y as FP2 */
|
|
func (E *ECP8) GetY() *FP8 {
|
|
W := NewECP8()
|
|
W.Copy(E)
|
|
W.Affine()
|
|
return W.y
|
|
}
|
|
|
|
/* extract projective x */
|
|
func (E *ECP8) getx() *FP8 {
|
|
return E.x
|
|
}
|
|
|
|
/* extract projective y */
|
|
func (E *ECP8) gety() *FP8 {
|
|
return E.y
|
|
}
|
|
|
|
/* extract projective z */
|
|
func (E *ECP8) getz() *FP8 {
|
|
return E.z
|
|
}
|
|
|
|
/* convert to byte array */
|
|
func (E *ECP8) ToBytes(b []byte, compress bool) {
|
|
var t [8 * int(MODBYTES)]byte
|
|
MB := 8 * int(MODBYTES)
|
|
alt := false
|
|
W := NewECP8()
|
|
W.Copy(E)
|
|
W.Affine()
|
|
W.x.ToBytes(t[:])
|
|
|
|
if (MODBITS-1)%8 <= 4 && ALLOW_ALT_COMPRESS {
|
|
alt = true
|
|
}
|
|
|
|
if alt {
|
|
for i := 0; i < MB; i++ {
|
|
b[i] = t[i]
|
|
}
|
|
if !compress {
|
|
W.y.ToBytes(t[:])
|
|
for i := 0; i < MB; i++ {
|
|
b[i+MB] = t[i]
|
|
}
|
|
} else {
|
|
b[0] |= 0x80
|
|
if W.y.islarger() == 1 {
|
|
b[0] |= 0x20
|
|
}
|
|
}
|
|
|
|
} else {
|
|
for i := 0; i < MB; i++ {
|
|
b[i+1] = t[i]
|
|
}
|
|
if !compress {
|
|
b[0] = 0x04
|
|
W.y.ToBytes(t[:])
|
|
for i := 0; i < MB; i++ {
|
|
b[i+MB+1] = t[i]
|
|
}
|
|
} else {
|
|
b[0] = 0x02
|
|
if W.y.sign() == 1 {
|
|
b[0] = 0x03
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert from byte array to point */
|
|
func ECP8_fromBytes(b []byte) *ECP8 {
|
|
var t [8 * int(MODBYTES)]byte
|
|
MB := 8 * int(MODBYTES)
|
|
typ := int(b[0])
|
|
alt := false
|
|
|
|
if (MODBITS-1)%8 <= 4 && ALLOW_ALT_COMPRESS {
|
|
alt = true
|
|
}
|
|
|
|
if alt {
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = b[i]
|
|
}
|
|
t[0] &= 0x1f
|
|
rx := FP8_fromBytes(t[:])
|
|
if (b[0] & 0x80) == 0 {
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = b[i+MB]
|
|
}
|
|
ry := FP8_fromBytes(t[:])
|
|
return NewECP8fp8s(rx, ry)
|
|
} else {
|
|
sgn := (b[0] & 0x20) >> 5
|
|
P := NewECP8fp8(rx, 0)
|
|
cmp := P.y.islarger()
|
|
if (sgn == 1 && cmp != 1) || (sgn == 0 && cmp == 1) {
|
|
P.neg()
|
|
}
|
|
return P
|
|
}
|
|
} else {
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = b[i+1]
|
|
}
|
|
rx := FP8_fromBytes(t[:])
|
|
if typ == 0x04 {
|
|
for i := 0; i < MB; i++ {
|
|
t[i] = b[i+MB+1]
|
|
}
|
|
ry := FP8_fromBytes(t[:])
|
|
return NewECP8fp8s(rx, ry)
|
|
} else {
|
|
return NewECP8fp8(rx, typ&1)
|
|
}
|
|
}
|
|
}
|
|
|
|
/* convert this to hex string */
|
|
func (E *ECP8) ToString() string {
|
|
W := NewECP8()
|
|
W.Copy(E)
|
|
W.Affine()
|
|
if W.Is_infinity() {
|
|
return "infinity"
|
|
}
|
|
return "(" + W.x.toString() + "," + W.y.toString() + ")"
|
|
}
|
|
|
|
/* Calculate RHS of twisted curve equation x^3+B/i */
|
|
func RHS8(x *FP8) *FP8 {
|
|
r := NewFP8copy(x)
|
|
r.sqr()
|
|
b2 := NewFP2big(NewBIGints(CURVE_B))
|
|
b4 := NewFP4fp2(b2)
|
|
b := NewFP8fp4(b4)
|
|
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
b.div_i()
|
|
}
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
b.times_i()
|
|
}
|
|
r.mul(x)
|
|
r.add(b)
|
|
|
|
r.reduce()
|
|
return r
|
|
}
|
|
|
|
/* construct this from (x,y) - but set to O if not on curve */
|
|
func NewECP8fp8s(ix *FP8, iy *FP8) *ECP8 {
|
|
E := new(ECP8)
|
|
E.x = NewFP8copy(ix)
|
|
E.y = NewFP8copy(iy)
|
|
E.z = NewFP8int(1)
|
|
E.x.norm()
|
|
rhs := RHS8(E.x)
|
|
y2 := NewFP8copy(E.y)
|
|
y2.sqr()
|
|
if !y2.Equals(rhs) {
|
|
E.inf()
|
|
}
|
|
return E
|
|
}
|
|
|
|
/* construct this from x - but set to O if not on curve */
|
|
func NewECP8fp8(ix *FP8, s int) *ECP8 {
|
|
E := new(ECP8)
|
|
h := NewFP()
|
|
E.x = NewFP8copy(ix)
|
|
E.y = NewFP8int(1)
|
|
E.z = NewFP8int(1)
|
|
E.x.norm()
|
|
rhs := RHS8(E.x)
|
|
if rhs.qr(h) == 1 {
|
|
rhs.sqrt(h)
|
|
if rhs.sign() != s {
|
|
rhs.neg()
|
|
}
|
|
rhs.reduce()
|
|
E.y.copy(rhs)
|
|
|
|
} else {
|
|
E.inf()
|
|
}
|
|
return E
|
|
}
|
|
|
|
/* this+=this */
|
|
func (E *ECP8) dbl() int {
|
|
iy := NewFP8copy(E.y)
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
iy.times_i()
|
|
}
|
|
|
|
t0 := NewFP8copy(E.y)
|
|
t0.sqr()
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
t0.times_i()
|
|
}
|
|
t1 := NewFP8copy(iy)
|
|
t1.mul(E.z)
|
|
t2 := NewFP8copy(E.z)
|
|
t2.sqr()
|
|
|
|
E.z.copy(t0)
|
|
E.z.add(t0)
|
|
E.z.norm()
|
|
E.z.add(E.z)
|
|
E.z.add(E.z)
|
|
E.z.norm()
|
|
|
|
t2.imul(3 * CURVE_B_I)
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
t2.times_i()
|
|
}
|
|
x3 := NewFP8copy(t2)
|
|
x3.mul(E.z)
|
|
|
|
y3 := NewFP8copy(t0)
|
|
|
|
y3.add(t2)
|
|
y3.norm()
|
|
E.z.mul(t1)
|
|
t1.copy(t2)
|
|
t1.add(t2)
|
|
t2.add(t1)
|
|
t2.norm()
|
|
t0.sub(t2)
|
|
t0.norm() //y^2-9bz^2
|
|
y3.mul(t0)
|
|
y3.add(x3) //(y^2+3z*2)(y^2-9z^2)+3b.z^2.8y^2
|
|
t1.copy(E.x)
|
|
t1.mul(iy) //
|
|
E.x.copy(t0)
|
|
E.x.norm()
|
|
E.x.mul(t1)
|
|
E.x.add(E.x) //(y^2-9bz^2)xy2
|
|
|
|
E.x.norm()
|
|
E.y.copy(y3)
|
|
E.y.norm()
|
|
|
|
return 1
|
|
}
|
|
|
|
/* this+=Q - return 0 for add, 1 for double, -1 for O */
|
|
func (E *ECP8) Add(Q *ECP8) int {
|
|
b := 3 * CURVE_B_I
|
|
t0 := NewFP8copy(E.x)
|
|
t0.mul(Q.x) // x.Q.x
|
|
t1 := NewFP8copy(E.y)
|
|
t1.mul(Q.y) // y.Q.y
|
|
|
|
t2 := NewFP8copy(E.z)
|
|
t2.mul(Q.z)
|
|
t3 := NewFP8copy(E.x)
|
|
t3.add(E.y)
|
|
t3.norm() //t3=X1+Y1
|
|
t4 := NewFP8copy(Q.x)
|
|
t4.add(Q.y)
|
|
t4.norm() //t4=X2+Y2
|
|
t3.mul(t4) //t3=(X1+Y1)(X2+Y2)
|
|
t4.copy(t0)
|
|
t4.add(t1) //t4=X1.X2+Y1.Y2
|
|
|
|
t3.sub(t4)
|
|
t3.norm()
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
t3.times_i() //t3=(X1+Y1)(X2+Y2)-(X1.X2+Y1.Y2) = X1.Y2+X2.Y1
|
|
}
|
|
t4.copy(E.y)
|
|
t4.add(E.z)
|
|
t4.norm() //t4=Y1+Z1
|
|
x3 := NewFP8copy(Q.y)
|
|
x3.add(Q.z)
|
|
x3.norm() //x3=Y2+Z2
|
|
|
|
t4.mul(x3) //t4=(Y1+Z1)(Y2+Z2)
|
|
x3.copy(t1) //
|
|
x3.add(t2) //X3=Y1.Y2+Z1.Z2
|
|
|
|
t4.sub(x3)
|
|
t4.norm()
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
t4.times_i() //t4=(Y1+Z1)(Y2+Z2) - (Y1.Y2+Z1.Z2) = Y1.Z2+Y2.Z1
|
|
}
|
|
x3.copy(E.x)
|
|
x3.add(E.z)
|
|
x3.norm() // x3=X1+Z1
|
|
y3 := NewFP8copy(Q.x)
|
|
y3.add(Q.z)
|
|
y3.norm() // y3=X2+Z2
|
|
x3.mul(y3) // x3=(X1+Z1)(X2+Z2)
|
|
y3.copy(t0)
|
|
y3.add(t2) // y3=X1.X2+Z1+Z2
|
|
y3.rsub(x3)
|
|
y3.norm() // y3=(X1+Z1)(X2+Z2) - (X1.X2+Z1.Z2) = X1.Z2+X2.Z1
|
|
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
t0.times_i() // x.Q.x
|
|
t1.times_i() // y.Q.y
|
|
}
|
|
x3.copy(t0)
|
|
x3.add(t0)
|
|
t0.add(x3)
|
|
t0.norm()
|
|
t2.imul(b)
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
t2.times_i()
|
|
}
|
|
z3 := NewFP8copy(t1)
|
|
z3.add(t2)
|
|
z3.norm()
|
|
t1.sub(t2)
|
|
t1.norm()
|
|
y3.imul(b)
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
y3.times_i()
|
|
}
|
|
x3.copy(y3)
|
|
x3.mul(t4)
|
|
t2.copy(t3)
|
|
t2.mul(t1)
|
|
x3.rsub(t2)
|
|
y3.mul(t0)
|
|
t1.mul(z3)
|
|
y3.add(t1)
|
|
t0.mul(t3)
|
|
z3.mul(t4)
|
|
z3.add(t0)
|
|
|
|
E.x.copy(x3)
|
|
E.x.norm()
|
|
E.y.copy(y3)
|
|
E.y.norm()
|
|
E.z.copy(z3)
|
|
E.z.norm()
|
|
|
|
return 0
|
|
}
|
|
|
|
/* set this-=Q */
|
|
func (E *ECP8) Sub(Q *ECP8) int {
|
|
NQ := NewECP8()
|
|
NQ.Copy(Q)
|
|
NQ.neg()
|
|
D := E.Add(NQ)
|
|
return D
|
|
}
|
|
|
|
func ECP8_frob_constants() [3]*FP2 {
|
|
Fra := NewBIGints(Fra)
|
|
Frb := NewBIGints(Frb)
|
|
X := NewFP2bigs(Fra, Frb)
|
|
|
|
F0 := NewFP2copy(X)
|
|
F0.sqr()
|
|
F2 := NewFP2copy(F0)
|
|
F2.mul_ip()
|
|
F2.norm()
|
|
F1 := NewFP2copy(F2)
|
|
F1.sqr()
|
|
F2.mul(F1)
|
|
|
|
F2.mul_ip()
|
|
F2.norm()
|
|
|
|
F1.copy(X)
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
F1.mul_ip()
|
|
F1.norm()
|
|
F1.inverse(nil)
|
|
F0.copy(F1)
|
|
F0.sqr()
|
|
F1.mul(F0)
|
|
}
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
F0.copy(F1)
|
|
F0.sqr()
|
|
F1.mul(F0)
|
|
F0.mul_ip()
|
|
F0.norm()
|
|
F1.mul_ip()
|
|
F1.norm()
|
|
F1.mul_ip()
|
|
F1.norm()
|
|
}
|
|
|
|
F := [3]*FP2{F0, F1, F2}
|
|
return F
|
|
}
|
|
|
|
/* set this*=q, where q is Modulus, using Frobenius */
|
|
func (E *ECP8) frob(F [3]*FP2, n int) {
|
|
for i := 0; i < n; i++ {
|
|
E.x.frob(F[2])
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
E.x.qmul(F[0])
|
|
E.x.times_i2()
|
|
}
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
E.x.qmul(F[0])
|
|
E.x.times_i2()
|
|
}
|
|
E.y.frob(F[2])
|
|
if SEXTIC_TWIST == M_TYPE {
|
|
E.y.qmul(F[1])
|
|
E.y.times_i2()
|
|
E.y.times_i()
|
|
}
|
|
if SEXTIC_TWIST == D_TYPE {
|
|
E.y.qmul(F[1])
|
|
E.y.times_i()
|
|
}
|
|
|
|
E.z.frob(F[2])
|
|
}
|
|
}
|
|
|
|
/* P*=e */
|
|
func (E *ECP8) mul(e *BIG) *ECP8 {
|
|
/* fixed size windows */
|
|
mt := NewBIG()
|
|
t := NewBIG()
|
|
P := NewECP8()
|
|
Q := NewECP8()
|
|
C := NewECP8()
|
|
|
|
if E.Is_infinity() {
|
|
return NewECP8()
|
|
}
|
|
|
|
var W []*ECP8
|
|
var w [1 + (NLEN*int(BASEBITS)+3)/4]int8
|
|
|
|
/* precompute table */
|
|
Q.Copy(E)
|
|
Q.dbl()
|
|
|
|
W = append(W, NewECP8())
|
|
W[0].Copy(E)
|
|
|
|
for i := 1; i < 8; i++ {
|
|
W = append(W, NewECP8())
|
|
W[i].Copy(W[i-1])
|
|
W[i].Add(Q)
|
|
}
|
|
|
|
/* make exponent odd - add 2P if even, P if odd */
|
|
t.copy(e)
|
|
s := int(t.parity())
|
|
t.inc(1)
|
|
t.norm()
|
|
ns := int(t.parity())
|
|
mt.copy(t)
|
|
mt.inc(1)
|
|
mt.norm()
|
|
t.cmove(mt, s)
|
|
Q.cmove(E, ns)
|
|
C.Copy(Q)
|
|
|
|
nb := 1 + (t.nbits()+3)/4
|
|
/* convert exponent to signed 4-bit window */
|
|
for i := 0; i < nb; i++ {
|
|
w[i] = int8(t.lastbits(5) - 16)
|
|
t.dec(int(w[i]))
|
|
t.norm()
|
|
t.fshr(4)
|
|
}
|
|
w[nb] = int8(t.lastbits(5))
|
|
|
|
//P.Copy(W[(w[nb]-1)/2])
|
|
P.selector(W, int32(w[nb]))
|
|
for i := nb - 1; i >= 0; i-- {
|
|
Q.selector(W, int32(w[i]))
|
|
P.dbl()
|
|
P.dbl()
|
|
P.dbl()
|
|
P.dbl()
|
|
P.Add(Q)
|
|
}
|
|
P.Sub(C)
|
|
P.Affine()
|
|
return P
|
|
}
|
|
|
|
/* Public version */
|
|
func (E *ECP8) Mul(e *BIG) *ECP8 {
|
|
return E.mul(e)
|
|
}
|
|
|
|
/* needed for SOK */
|
|
func (E *ECP8) Cfp() {
|
|
|
|
F := ECP8_frob_constants()
|
|
x := NewBIGints(CURVE_Bnx)
|
|
|
|
xQ := E.mul(x)
|
|
x2Q := xQ.mul(x)
|
|
x3Q := x2Q.mul(x)
|
|
x4Q := x3Q.mul(x)
|
|
x5Q := x4Q.mul(x)
|
|
x6Q := x5Q.mul(x)
|
|
x7Q := x6Q.mul(x)
|
|
x8Q := x7Q.mul(x)
|
|
|
|
if SIGN_OF_X == NEGATIVEX {
|
|
xQ.neg()
|
|
x3Q.neg()
|
|
x5Q.neg()
|
|
x7Q.neg()
|
|
}
|
|
x8Q.Sub(x7Q)
|
|
x8Q.Sub(E)
|
|
|
|
x7Q.Sub(x6Q)
|
|
x7Q.frob(F, 1)
|
|
|
|
x6Q.Sub(x5Q)
|
|
x6Q.frob(F, 2)
|
|
|
|
x5Q.Sub(x4Q)
|
|
x5Q.frob(F, 3)
|
|
|
|
x4Q.Sub(x3Q)
|
|
x4Q.frob(F, 4)
|
|
|
|
x3Q.Sub(x2Q)
|
|
x3Q.frob(F, 5)
|
|
|
|
x2Q.Sub(xQ)
|
|
x2Q.frob(F, 6)
|
|
|
|
xQ.Sub(E)
|
|
xQ.frob(F, 7)
|
|
|
|
E.dbl()
|
|
E.frob(F, 8)
|
|
|
|
E.Add(x8Q)
|
|
E.Add(x7Q)
|
|
E.Add(x6Q)
|
|
E.Add(x5Q)
|
|
|
|
E.Add(x4Q)
|
|
E.Add(x3Q)
|
|
E.Add(x2Q)
|
|
E.Add(xQ)
|
|
|
|
E.Affine()
|
|
}
|
|
|
|
func ECP8_generator() *ECP8 {
|
|
var G *ECP8
|
|
G = NewECP8fp8s(
|
|
NewFP8fp4s(
|
|
NewFP4fp2s(
|
|
NewFP2bigs(NewBIGints(CURVE_Pxaaa), NewBIGints(CURVE_Pxaab)),
|
|
NewFP2bigs(NewBIGints(CURVE_Pxaba), NewBIGints(CURVE_Pxabb))),
|
|
NewFP4fp2s(
|
|
NewFP2bigs(NewBIGints(CURVE_Pxbaa), NewBIGints(CURVE_Pxbab)),
|
|
NewFP2bigs(NewBIGints(CURVE_Pxbba), NewBIGints(CURVE_Pxbbb)))),
|
|
NewFP8fp4s(
|
|
NewFP4fp2s(
|
|
NewFP2bigs(NewBIGints(CURVE_Pyaaa), NewBIGints(CURVE_Pyaab)),
|
|
NewFP2bigs(NewBIGints(CURVE_Pyaba), NewBIGints(CURVE_Pyabb))),
|
|
NewFP4fp2s(
|
|
NewFP2bigs(NewBIGints(CURVE_Pybaa), NewBIGints(CURVE_Pybab)),
|
|
NewFP2bigs(NewBIGints(CURVE_Pybba), NewBIGints(CURVE_Pybbb)))))
|
|
return G
|
|
}
|
|
|
|
func ECP8_hap2point(h *BIG) *ECP8 {
|
|
one := NewBIGint(1)
|
|
x := NewBIGcopy(h)
|
|
var X2 *FP2
|
|
var X4 *FP4
|
|
var X8 *FP8
|
|
var Q *ECP8
|
|
for true {
|
|
X2 = NewFP2bigs(one, x)
|
|
X4 = NewFP4fp2(X2)
|
|
X8 = NewFP8fp4(X4)
|
|
Q = NewECP8fp8(X8, 0)
|
|
if !Q.Is_infinity() {
|
|
break
|
|
}
|
|
x.inc(1)
|
|
x.norm()
|
|
}
|
|
return Q
|
|
}
|
|
|
|
/* Deterministic mapping of Fp to point on curve */
|
|
func ECP8_map2point(H *FP8) *ECP8 {
|
|
// Shallue and van de Woestijne
|
|
NY := NewFP8int(1)
|
|
T := NewFP8copy(H)
|
|
sgn := T.sign()
|
|
|
|
Z := NewFPint(RIADZG2A)
|
|
X1 := NewFP8fp(Z)
|
|
X3 := NewFP8copy(X1)
|
|
A := RHS8(X1)
|
|
W := NewFP8copy(A)
|
|
W.sqrt(nil)
|
|
|
|
s := NewFPbig(NewBIGints(SQRTm3))
|
|
Z.mul(s)
|
|
|
|
T.sqr()
|
|
Y := NewFP8copy(A)
|
|
Y.mul(T)
|
|
T.copy(NY)
|
|
T.add(Y)
|
|
T.norm()
|
|
Y.rsub(NY)
|
|
Y.norm()
|
|
NY.copy(T)
|
|
NY.mul(Y)
|
|
|
|
NY.tmul(Z)
|
|
NY.inverse(nil)
|
|
|
|
W.tmul(Z)
|
|
if W.sign() == 1 {
|
|
W.neg()
|
|
W.norm()
|
|
}
|
|
W.tmul(Z)
|
|
W.mul(H)
|
|
W.mul(Y)
|
|
W.mul(NY)
|
|
|
|
X1.neg()
|
|
X1.norm()
|
|
X1.div2()
|
|
X2 := NewFP8copy(X1)
|
|
X1.sub(W)
|
|
X1.norm()
|
|
X2.add(W)
|
|
X2.norm()
|
|
A.add(A)
|
|
A.add(A)
|
|
A.norm()
|
|
T.sqr()
|
|
T.mul(NY)
|
|
T.sqr()
|
|
A.mul(T)
|
|
X3.add(A)
|
|
X3.norm()
|
|
|
|
Y.copy(RHS8(X2))
|
|
X3.cmove(X2, Y.qr(nil))
|
|
Y.copy(RHS8(X1))
|
|
X3.cmove(X1, Y.qr(nil))
|
|
Y.copy(RHS8(X3))
|
|
Y.sqrt(nil)
|
|
|
|
ne := Y.sign() ^ sgn
|
|
W.copy(Y)
|
|
W.neg()
|
|
W.norm()
|
|
Y.cmove(W, ne)
|
|
|
|
return NewECP8fp8s(X3, Y)
|
|
}
|
|
|
|
/* Map octet string to curve point */
|
|
func ECP8_mapit(h []byte) *ECP8 {
|
|
q := NewBIGints(Modulus)
|
|
dx := DBIG_fromBytes(h)
|
|
x := dx.Mod(q)
|
|
|
|
Q := ECP8_hap2point(x)
|
|
Q.Cfp()
|
|
return Q
|
|
}
|
|
|
|
/* P=u0.Q0+u1*Q1+u2*Q2+u3*Q3.. */
|
|
// Bos & Costello https://eprint.iacr.org/2013/458.pdf
|
|
// Faz-Hernandez & Longa & Sanchez https://eprint.iacr.org/2013/158.pdf
|
|
// Side channel attack secure
|
|
func mul16(Q []*ECP8, u []*BIG) *ECP8 {
|
|
W := NewECP8()
|
|
P := NewECP8()
|
|
var T1 []*ECP8
|
|
var T2 []*ECP8
|
|
var T3 []*ECP8
|
|
var T4 []*ECP8
|
|
mt := NewBIG()
|
|
var t []*BIG
|
|
var bt int8
|
|
var k int
|
|
|
|
var w1 [NLEN*int(BASEBITS) + 1]int8
|
|
var s1 [NLEN*int(BASEBITS) + 1]int8
|
|
var w2 [NLEN*int(BASEBITS) + 1]int8
|
|
var s2 [NLEN*int(BASEBITS) + 1]int8
|
|
var w3 [NLEN*int(BASEBITS) + 1]int8
|
|
var s3 [NLEN*int(BASEBITS) + 1]int8
|
|
var w4 [NLEN*int(BASEBITS) + 1]int8
|
|
var s4 [NLEN*int(BASEBITS) + 1]int8
|
|
|
|
for i := 0; i < 16; i++ {
|
|
t = append(t, NewBIGcopy(u[i]))
|
|
}
|
|
|
|
T1 = append(T1, NewECP8())
|
|
T1[0].Copy(Q[0]) // Q[0]
|
|
T1 = append(T1, NewECP8())
|
|
T1[1].Copy(T1[0])
|
|
T1[1].Add(Q[1]) // Q[0]+Q[1]
|
|
T1 = append(T1, NewECP8())
|
|
T1[2].Copy(T1[0])
|
|
T1[2].Add(Q[2]) // Q[0]+Q[2]
|
|
T1 = append(T1, NewECP8())
|
|
T1[3].Copy(T1[1])
|
|
T1[3].Add(Q[2]) // Q[0]+Q[1]+Q[2]
|
|
T1 = append(T1, NewECP8())
|
|
T1[4].Copy(T1[0])
|
|
T1[4].Add(Q[3]) // Q[0]+Q[3]
|
|
T1 = append(T1, NewECP8())
|
|
T1[5].Copy(T1[1])
|
|
T1[5].Add(Q[3]) // Q[0]+Q[1]+Q[3]
|
|
T1 = append(T1, NewECP8())
|
|
T1[6].Copy(T1[2])
|
|
T1[6].Add(Q[3]) // Q[0]+Q[2]+Q[3]
|
|
T1 = append(T1, NewECP8())
|
|
T1[7].Copy(T1[3])
|
|
T1[7].Add(Q[3]) // Q[0]+Q[1]+Q[2]+Q[3]
|
|
|
|
T2 = append(T2, NewECP8())
|
|
T2[0].Copy(Q[4]) // Q[0]
|
|
T2 = append(T2, NewECP8())
|
|
T2[1].Copy(T2[0])
|
|
T2[1].Add(Q[5]) // Q[0]+Q[1]
|
|
T2 = append(T2, NewECP8())
|
|
T2[2].Copy(T2[0])
|
|
T2[2].Add(Q[6]) // Q[0]+Q[2]
|
|
T2 = append(T2, NewECP8())
|
|
T2[3].Copy(T2[1])
|
|
T2[3].Add(Q[6]) // Q[0]+Q[1]+Q[2]
|
|
T2 = append(T2, NewECP8())
|
|
T2[4].Copy(T2[0])
|
|
T2[4].Add(Q[7]) // Q[0]+Q[3]
|
|
T2 = append(T2, NewECP8())
|
|
T2[5].Copy(T2[1])
|
|
T2[5].Add(Q[7]) // Q[0]+Q[1]+Q[3]
|
|
T2 = append(T2, NewECP8())
|
|
T2[6].Copy(T2[2])
|
|
T2[6].Add(Q[7]) // Q[0]+Q[2]+Q[3]
|
|
T2 = append(T2, NewECP8())
|
|
T2[7].Copy(T2[3])
|
|
T2[7].Add(Q[7]) // Q[0]+Q[1]+Q[2]+Q[3]
|
|
|
|
T3 = append(T3, NewECP8())
|
|
T3[0].Copy(Q[8]) // Q[0]
|
|
T3 = append(T3, NewECP8())
|
|
T3[1].Copy(T3[0])
|
|
T3[1].Add(Q[9]) // Q[0]+Q[1]
|
|
T3 = append(T3, NewECP8())
|
|
T3[2].Copy(T3[0])
|
|
T3[2].Add(Q[10]) // Q[0]+Q[2]
|
|
T3 = append(T3, NewECP8())
|
|
T3[3].Copy(T3[1])
|
|
T3[3].Add(Q[10]) // Q[0]+Q[1]+Q[2]
|
|
T3 = append(T3, NewECP8())
|
|
T3[4].Copy(T3[0])
|
|
T3[4].Add(Q[11]) // Q[0]+Q[3]
|
|
T3 = append(T3, NewECP8())
|
|
T3[5].Copy(T3[1])
|
|
T3[5].Add(Q[11]) // Q[0]+Q[1]+Q[3]
|
|
T3 = append(T3, NewECP8())
|
|
T3[6].Copy(T3[2])
|
|
T3[6].Add(Q[11]) // Q[0]+Q[2]+Q[3]
|
|
T3 = append(T3, NewECP8())
|
|
T3[7].Copy(T3[3])
|
|
T3[7].Add(Q[11]) // Q[0]+Q[1]+Q[2]+Q[3]
|
|
|
|
T4 = append(T4, NewECP8())
|
|
T4[0].Copy(Q[12]) // Q[0]
|
|
T4 = append(T4, NewECP8())
|
|
T4[1].Copy(T4[0])
|
|
T4[1].Add(Q[13]) // Q[0]+Q[1]
|
|
T4 = append(T4, NewECP8())
|
|
T4[2].Copy(T4[0])
|
|
T4[2].Add(Q[14]) // Q[0]+Q[2]
|
|
T4 = append(T4, NewECP8())
|
|
T4[3].Copy(T4[1])
|
|
T4[3].Add(Q[14]) // Q[0]+Q[1]+Q[2]
|
|
T4 = append(T4, NewECP8())
|
|
T4[4].Copy(T4[0])
|
|
T4[4].Add(Q[15]) // Q[0]+Q[3]
|
|
T4 = append(T4, NewECP8())
|
|
T4[5].Copy(T4[1])
|
|
T4[5].Add(Q[15]) // Q[0]+Q[1]+Q[3]
|
|
T4 = append(T4, NewECP8())
|
|
T4[6].Copy(T4[2])
|
|
T4[6].Add(Q[15]) // Q[0]+Q[2]+Q[3]
|
|
T4 = append(T4, NewECP8())
|
|
T4[7].Copy(T4[3])
|
|
T4[7].Add(Q[15]) // Q[0]+Q[1]+Q[2]+Q[3]
|
|
|
|
// Make them odd
|
|
pb1 := 1 - t[0].parity()
|
|
t[0].inc(pb1)
|
|
|
|
pb2 := 1 - t[4].parity()
|
|
t[4].inc(pb2)
|
|
|
|
pb3 := 1 - t[8].parity()
|
|
t[8].inc(pb3)
|
|
|
|
pb4 := 1 - t[12].parity()
|
|
t[12].inc(pb4)
|
|
|
|
// Number of bits
|
|
mt.zero()
|
|
for i := 0; i < 16; i++ {
|
|
t[i].norm()
|
|
mt.or(t[i])
|
|
}
|
|
|
|
nb := 1 + mt.nbits()
|
|
|
|
// Sign pivot
|
|
s1[nb-1] = 1
|
|
s2[nb-1] = 1
|
|
s3[nb-1] = 1
|
|
s4[nb-1] = 1
|
|
for i := 0; i < nb-1; i++ {
|
|
t[0].fshr(1)
|
|
s1[i] = 2*int8(t[0].parity()) - 1
|
|
t[4].fshr(1)
|
|
s2[i] = 2*int8(t[4].parity()) - 1
|
|
t[8].fshr(1)
|
|
s3[i] = 2*int8(t[8].parity()) - 1
|
|
t[12].fshr(1)
|
|
s4[i] = 2*int8(t[12].parity()) - 1
|
|
|
|
}
|
|
|
|
// Recoded exponents
|
|
for i := 0; i < nb; i++ {
|
|
w1[i] = 0
|
|
k = 1
|
|
for j := 1; j < 4; j++ {
|
|
bt = s1[i] * int8(t[j].parity())
|
|
t[j].fshr(1)
|
|
t[j].dec(int(bt) >> 1)
|
|
t[j].norm()
|
|
w1[i] += bt * int8(k)
|
|
k *= 2
|
|
}
|
|
w2[i] = 0
|
|
k = 1
|
|
for j := 5; j < 8; j++ {
|
|
bt = s2[i] * int8(t[j].parity())
|
|
t[j].fshr(1)
|
|
t[j].dec(int(bt) >> 1)
|
|
t[j].norm()
|
|
w2[i] += bt * int8(k)
|
|
k *= 2
|
|
}
|
|
w3[i] = 0
|
|
k = 1
|
|
for j := 9; j < 12; j++ {
|
|
bt = s3[i] * int8(t[j].parity())
|
|
t[j].fshr(1)
|
|
t[j].dec(int(bt) >> 1)
|
|
t[j].norm()
|
|
w3[i] += bt * int8(k)
|
|
k *= 2
|
|
}
|
|
w4[i] = 0
|
|
k = 1
|
|
for j := 13; j < 16; j++ {
|
|
bt = s4[i] * int8(t[j].parity())
|
|
t[j].fshr(1)
|
|
t[j].dec(int(bt) >> 1)
|
|
t[j].norm()
|
|
w4[i] += bt * int8(k)
|
|
k *= 2
|
|
}
|
|
}
|
|
|
|
// Main loop
|
|
P.selector(T1, int32(2*w1[nb-1]+1))
|
|
W.selector(T2, int32(2*w2[nb-1]+1))
|
|
P.Add(W)
|
|
W.selector(T3, int32(2*w3[nb-1]+1))
|
|
P.Add(W)
|
|
W.selector(T4, int32(2*w4[nb-1]+1))
|
|
P.Add(W)
|
|
for i := nb - 2; i >= 0; i-- {
|
|
P.dbl()
|
|
W.selector(T1, int32(2*w1[i]+s1[i]))
|
|
P.Add(W)
|
|
W.selector(T2, int32(2*w2[i]+s2[i]))
|
|
P.Add(W)
|
|
W.selector(T3, int32(2*w3[i]+s3[i]))
|
|
P.Add(W)
|
|
W.selector(T4, int32(2*w4[i]+s4[i]))
|
|
P.Add(W)
|
|
|
|
}
|
|
|
|
// apply correction
|
|
W.Copy(P)
|
|
W.Sub(Q[0])
|
|
P.cmove(W, pb1)
|
|
W.Copy(P)
|
|
W.Sub(Q[4])
|
|
P.cmove(W, pb2)
|
|
W.Copy(P)
|
|
W.Sub(Q[8])
|
|
P.cmove(W, pb3)
|
|
W.Copy(P)
|
|
W.Sub(Q[12])
|
|
P.cmove(W, pb4)
|
|
|
|
P.Affine()
|
|
return P
|
|
}
|