mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2024-12-26 08:35:17 +00:00
540 lines
18 KiB
Go
540 lines
18 KiB
Go
// Copyright 2022 The LevelDB-Go and Pebble Authors. All rights reserved. Use
|
|
// of this source code is governed by a BSD-style license that can be found in
|
|
// the LICENSE file.
|
|
|
|
package keyspan
|
|
|
|
import (
|
|
"bytes"
|
|
|
|
"github.com/cockroachdb/pebble/internal/base"
|
|
"github.com/cockroachdb/pebble/internal/bytealloc"
|
|
"github.com/cockroachdb/pebble/internal/invariants"
|
|
)
|
|
|
|
// bufferReuseMaxCapacity is the maximum capacity of a DefragmentingIter buffer
|
|
// that DefragmentingIter will reuse. Buffers larger than this will be
|
|
// discarded and reallocated as necessary.
|
|
const bufferReuseMaxCapacity = 10 << 10 // 10 KB
|
|
|
|
// keysReuseMaxCapacity is the maximum capacity of a []keyspan.Key buffer that
|
|
// DefragmentingIter will reuse. Buffers larger than this will be discarded and
|
|
// reallocated as necessary.
|
|
const keysReuseMaxCapacity = 100
|
|
|
|
// DefragmentMethod configures the defragmentation performed by the
|
|
// DefragmentingIter.
|
|
type DefragmentMethod interface {
|
|
// ShouldDefragment takes two abutting spans and returns whether the two
|
|
// spans should be combined into a single, defragmented Span.
|
|
ShouldDefragment(equal base.Equal, left, right *Span) bool
|
|
}
|
|
|
|
// The DefragmentMethodFunc type is an adapter to allow the use of ordinary
|
|
// functions as DefragmentMethods. If f is a function with the appropriate
|
|
// signature, DefragmentMethodFunc(f) is a DefragmentMethod that calls f.
|
|
type DefragmentMethodFunc func(equal base.Equal, left, right *Span) bool
|
|
|
|
// ShouldDefragment calls f(equal, left, right).
|
|
func (f DefragmentMethodFunc) ShouldDefragment(equal base.Equal, left, right *Span) bool {
|
|
return f(equal, left, right)
|
|
}
|
|
|
|
// DefragmentInternal configures a DefragmentingIter to defragment spans
|
|
// only if they have identical keys. It requires spans' keys to be sorted in
|
|
// trailer descending order.
|
|
//
|
|
// This defragmenting method is intended for use in compactions that may see
|
|
// internal range keys fragments that may now be joined, because the state that
|
|
// required their fragmentation has been dropped.
|
|
var DefragmentInternal DefragmentMethod = DefragmentMethodFunc(func(equal base.Equal, a, b *Span) bool {
|
|
if a.KeysOrder != ByTrailerDesc || b.KeysOrder != ByTrailerDesc {
|
|
panic("pebble: span keys unexpectedly not in trailer descending order")
|
|
}
|
|
if len(a.Keys) != len(b.Keys) {
|
|
return false
|
|
}
|
|
for i := range a.Keys {
|
|
if a.Keys[i].Trailer != b.Keys[i].Trailer {
|
|
return false
|
|
}
|
|
if !equal(a.Keys[i].Suffix, b.Keys[i].Suffix) {
|
|
return false
|
|
}
|
|
if !bytes.Equal(a.Keys[i].Value, b.Keys[i].Value) {
|
|
return false
|
|
}
|
|
}
|
|
return true
|
|
})
|
|
|
|
// DefragmentReducer merges the current and next Key slices, returning a new Key
|
|
// slice.
|
|
//
|
|
// Implementations should modify and return `cur` to save on allocations, or
|
|
// consider allocating a new slice, as the `cur` slice may be retained by the
|
|
// DefragmentingIter and mutated. The `next` slice must not be mutated.
|
|
//
|
|
// The incoming slices are sorted by (SeqNum, Kind) descending. The output slice
|
|
// must also have this sort order.
|
|
type DefragmentReducer func(cur, next []Key) []Key
|
|
|
|
// StaticDefragmentReducer is a no-op DefragmentReducer that simply returns the
|
|
// current key slice, effectively retaining the first set of keys encountered
|
|
// for a defragmented span.
|
|
//
|
|
// This reducer can be used, for example, when the set of Keys for each Span
|
|
// being reduced is not expected to change, and therefore the keys from the
|
|
// first span encountered can be used without considering keys in subsequent
|
|
// spans.
|
|
var StaticDefragmentReducer DefragmentReducer = func(cur, _ []Key) []Key {
|
|
return cur
|
|
}
|
|
|
|
// iterPos is an enum indicating the position of the defragmenting iter's
|
|
// wrapped iter. The defragmenting iter must look ahead or behind when
|
|
// defragmenting forward or backwards respectively, and this enum records that
|
|
// current position.
|
|
type iterPos int8
|
|
|
|
const (
|
|
iterPosPrev iterPos = -1
|
|
iterPosCurr iterPos = 0
|
|
iterPosNext iterPos = +1
|
|
)
|
|
|
|
// DefragmentingIter wraps a key span iterator, defragmenting physical
|
|
// fragmentation during iteration.
|
|
//
|
|
// During flushes and compactions, keys applied over a span may be split at
|
|
// sstable boundaries. This fragmentation can produce internal key bounds that
|
|
// do not match any of the bounds ever supplied to a user operation. This
|
|
// physical fragmentation is necessary to avoid excessively wide sstables.
|
|
//
|
|
// The defragmenting iterator undoes this physical fragmentation, joining spans
|
|
// with abutting bounds and equal state. The defragmenting iterator takes a
|
|
// DefragmentMethod to determine what is "equal state" for a span. The
|
|
// DefragmentMethod is a function type, allowing arbitrary comparisons between
|
|
// Span keys.
|
|
//
|
|
// Seeking (SeekGE, SeekLT) poses an obstacle to defragmentation. A seek may
|
|
// land on a physical fragment in the middle of several fragments that must be
|
|
// defragmented. A seek that lands in a fragment straddling the seek key must
|
|
// first degfragment in the opposite direction of iteration to find the
|
|
// beginning of the defragmented span, and then defragments in the iteration
|
|
// direction, ensuring it's found a whole defragmented span.
|
|
type DefragmentingIter struct {
|
|
// DefragmentingBuffers holds buffers used for copying iterator state.
|
|
*DefragmentingBuffers
|
|
comparer *base.Comparer
|
|
equal base.Equal
|
|
iter FragmentIterator
|
|
iterSpan *Span
|
|
iterPos iterPos
|
|
|
|
// curr holds the span at the current iterator position.
|
|
curr Span
|
|
|
|
// method is a comparison function for two spans. method is called when two
|
|
// spans are abutting to determine whether they may be defragmented.
|
|
// method does not itself check for adjacency for the two spans.
|
|
method DefragmentMethod
|
|
|
|
// reduce is the reducer function used to collect Keys across all spans that
|
|
// constitute a defragmented span.
|
|
reduce DefragmentReducer
|
|
}
|
|
|
|
// DefragmentingBuffers holds buffers used for copying iterator state.
|
|
type DefragmentingBuffers struct {
|
|
// currBuf is a buffer for use when copying user keys for curr. currBuf is
|
|
// cleared between positioning methods.
|
|
currBuf bytealloc.A
|
|
// keysBuf is a buffer for use when copying Keys for DefragmentingIter.curr.
|
|
keysBuf []Key
|
|
// keyBuf is a buffer specifically for the defragmented start key when
|
|
// defragmenting backwards or the defragmented end key when defragmenting
|
|
// forwards. These bounds are overwritten repeatedly during defragmentation,
|
|
// and the defragmentation routines overwrite keyBuf repeatedly to store
|
|
// these extended bounds.
|
|
keyBuf []byte
|
|
}
|
|
|
|
// PrepareForReuse discards any excessively large buffers.
|
|
func (bufs *DefragmentingBuffers) PrepareForReuse() {
|
|
if cap(bufs.currBuf) > bufferReuseMaxCapacity {
|
|
bufs.currBuf = nil
|
|
}
|
|
if cap(bufs.keyBuf) > bufferReuseMaxCapacity {
|
|
bufs.keyBuf = nil
|
|
}
|
|
if cap(bufs.keysBuf) > keysReuseMaxCapacity {
|
|
bufs.keysBuf = nil
|
|
}
|
|
}
|
|
|
|
// Assert that *DefragmentingIter implements the FragmentIterator interface.
|
|
var _ FragmentIterator = (*DefragmentingIter)(nil)
|
|
|
|
// Init initializes the defragmenting iter using the provided defragment
|
|
// method.
|
|
func (i *DefragmentingIter) Init(
|
|
comparer *base.Comparer,
|
|
iter FragmentIterator,
|
|
equal DefragmentMethod,
|
|
reducer DefragmentReducer,
|
|
bufs *DefragmentingBuffers,
|
|
) {
|
|
*i = DefragmentingIter{
|
|
DefragmentingBuffers: bufs,
|
|
comparer: comparer,
|
|
equal: comparer.Equal,
|
|
iter: iter,
|
|
method: equal,
|
|
reduce: reducer,
|
|
}
|
|
}
|
|
|
|
// Error returns any accumulated error.
|
|
func (i *DefragmentingIter) Error() error {
|
|
return i.iter.Error()
|
|
}
|
|
|
|
// Close closes the underlying iterators.
|
|
func (i *DefragmentingIter) Close() error {
|
|
return i.iter.Close()
|
|
}
|
|
|
|
// SeekGE moves the iterator to the first span covering a key greater than or
|
|
// equal to the given key. This is equivalent to seeking to the first span with
|
|
// an end key greater than the given key.
|
|
func (i *DefragmentingIter) SeekGE(key []byte) *Span {
|
|
i.iterSpan = i.iter.SeekGE(key)
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
} else if i.iterSpan.Empty() {
|
|
i.iterPos = iterPosCurr
|
|
return i.iterSpan
|
|
}
|
|
// If the span starts strictly after key, we know there mustn't be an
|
|
// earlier span that ends at i.iterSpan.Start, otherwise i.iter would've
|
|
// returned that span instead.
|
|
if i.comparer.Compare(i.iterSpan.Start, key) > 0 {
|
|
return i.defragmentForward()
|
|
}
|
|
|
|
// The span we landed on has a Start bound ≤ key. There may be additional
|
|
// fragments before this span. Defragment backward to find the start of the
|
|
// defragmented span.
|
|
i.defragmentBackward()
|
|
|
|
// Defragmenting backward may have stopped because it encountered an error.
|
|
// If so, we must not continue so that i.iter.Error() (and thus i.Error())
|
|
// yields the error.
|
|
if i.iterSpan == nil && i.iter.Error() != nil {
|
|
return nil
|
|
}
|
|
|
|
if i.iterPos == iterPosPrev {
|
|
// Next once back onto the span.
|
|
i.iterSpan = i.iter.Next()
|
|
}
|
|
// Defragment the full span from its start.
|
|
return i.defragmentForward()
|
|
}
|
|
|
|
// SeekLT moves the iterator to the last span covering a key less than the
|
|
// given key. This is equivalent to seeking to the last span with a start
|
|
// key less than the given key.
|
|
func (i *DefragmentingIter) SeekLT(key []byte) *Span {
|
|
i.iterSpan = i.iter.SeekLT(key)
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
} else if i.iterSpan.Empty() {
|
|
i.iterPos = iterPosCurr
|
|
return i.iterSpan
|
|
}
|
|
// If the span ends strictly before key, we know there mustn't be a later
|
|
// span that starts at i.iterSpan.End, otherwise i.iter would've returned
|
|
// that span instead.
|
|
if i.comparer.Compare(i.iterSpan.End, key) < 0 {
|
|
return i.defragmentBackward()
|
|
}
|
|
|
|
// The span we landed on has a End bound ≥ key. There may be additional
|
|
// fragments after this span. Defragment forward to find the end of the
|
|
// defragmented span.
|
|
i.defragmentForward()
|
|
|
|
// Defragmenting forward may have stopped because it encountered an error.
|
|
// If so, we must not continue so that i.iter.Error() (and thus i.Error())
|
|
// yields the error.
|
|
if i.iterSpan == nil && i.iter.Error() != nil {
|
|
return nil
|
|
}
|
|
|
|
if i.iterPos == iterPosNext {
|
|
// Prev once back onto the span.
|
|
i.iterSpan = i.iter.Prev()
|
|
}
|
|
// Defragment the full span from its end.
|
|
return i.defragmentBackward()
|
|
}
|
|
|
|
// First seeks the iterator to the first span and returns it.
|
|
func (i *DefragmentingIter) First() *Span {
|
|
i.iterSpan = i.iter.First()
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
return i.defragmentForward()
|
|
}
|
|
|
|
// Last seeks the iterator to the last span and returns it.
|
|
func (i *DefragmentingIter) Last() *Span {
|
|
i.iterSpan = i.iter.Last()
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
return i.defragmentBackward()
|
|
}
|
|
|
|
// Next advances to the next span and returns it.
|
|
func (i *DefragmentingIter) Next() *Span {
|
|
switch i.iterPos {
|
|
case iterPosPrev:
|
|
// Switching directions; The iterator is currently positioned over the
|
|
// last span of the previous set of fragments. In the below diagram,
|
|
// the iterator is positioned over the last span that contributes to
|
|
// the defragmented x position. We want to be positioned over the first
|
|
// span that contributes to the z position.
|
|
//
|
|
// x x x y y y z z z
|
|
// ^ ^
|
|
// old new
|
|
//
|
|
// Next once to move onto y, defragment forward to land on the first z
|
|
// position.
|
|
i.iterSpan = i.iter.Next()
|
|
if invariants.Enabled && i.iterSpan == nil && i.iter.Error() == nil {
|
|
panic("pebble: invariant violation: no next span while switching directions")
|
|
}
|
|
// We're now positioned on the first span that was defragmented into the
|
|
// current iterator position. Skip over the rest of the current iterator
|
|
// position's constitutent fragments. In the above example, this would
|
|
// land on the first 'z'.
|
|
i.defragmentForward()
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
|
|
// Now that we're positioned over the first of the next set of
|
|
// fragments, defragment forward.
|
|
return i.defragmentForward()
|
|
case iterPosCurr:
|
|
// iterPosCurr is only used when the iter is exhausted or when the iterator
|
|
// is at an empty span.
|
|
if invariants.Enabled && i.iterSpan != nil && !i.iterSpan.Empty() {
|
|
panic("pebble: invariant violation: iterPosCurr with valid iterSpan")
|
|
}
|
|
|
|
i.iterSpan = i.iter.Next()
|
|
if i.iterSpan == nil {
|
|
return nil
|
|
}
|
|
return i.defragmentForward()
|
|
case iterPosNext:
|
|
// Already at the next span.
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
return i.defragmentForward()
|
|
default:
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// Prev steps back to the previous span and returns it.
|
|
func (i *DefragmentingIter) Prev() *Span {
|
|
switch i.iterPos {
|
|
case iterPosPrev:
|
|
// Already at the previous span.
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
return i.defragmentBackward()
|
|
case iterPosCurr:
|
|
// iterPosCurr is only used when the iter is exhausted or when the iterator
|
|
// is at an empty span.
|
|
if invariants.Enabled && i.iterSpan != nil && !i.iterSpan.Empty() {
|
|
panic("pebble: invariant violation: iterPosCurr with valid iterSpan")
|
|
}
|
|
|
|
i.iterSpan = i.iter.Prev()
|
|
if i.iterSpan == nil {
|
|
return nil
|
|
}
|
|
return i.defragmentBackward()
|
|
case iterPosNext:
|
|
// Switching directions; The iterator is currently positioned over the
|
|
// first fragment of the next set of fragments. In the below diagram,
|
|
// the iterator is positioned over the first span that contributes to
|
|
// the defragmented z position. We want to be positioned over the last
|
|
// span that contributes to the x position.
|
|
//
|
|
// x x x y y y z z z
|
|
// ^ ^
|
|
// new old
|
|
//
|
|
// Prev once to move onto y, defragment backward to land on the last x
|
|
// position.
|
|
i.iterSpan = i.iter.Prev()
|
|
if invariants.Enabled && i.iterSpan == nil && i.iter.Error() == nil {
|
|
panic("pebble: invariant violation: no previous span while switching directions")
|
|
}
|
|
// We're now positioned on the last span that was defragmented into the
|
|
// current iterator position. Skip over the rest of the current iterator
|
|
// position's constitutent fragments. In the above example, this would
|
|
// land on the last 'x'.
|
|
i.defragmentBackward()
|
|
|
|
// Now that we're positioned over the last of the prev set of
|
|
// fragments, defragment backward.
|
|
if i.iterSpan == nil {
|
|
i.iterPos = iterPosCurr
|
|
return nil
|
|
}
|
|
return i.defragmentBackward()
|
|
default:
|
|
panic("unreachable")
|
|
}
|
|
}
|
|
|
|
// checkEqual checks the two spans for logical equivalence. It uses the passed-in
|
|
// DefragmentMethod and ensures both spans are NOT empty; not defragmenting empty
|
|
// spans is an optimization that lets us load fewer sstable blocks.
|
|
func (i *DefragmentingIter) checkEqual(left, right *Span) bool {
|
|
return (!left.Empty() && !right.Empty()) && i.method.ShouldDefragment(i.equal, i.iterSpan, &i.curr)
|
|
}
|
|
|
|
// defragmentForward defragments spans in the forward direction, starting from
|
|
// i.iter's current position. The span at the current position must be non-nil,
|
|
// but may be Empty().
|
|
func (i *DefragmentingIter) defragmentForward() *Span {
|
|
if i.iterSpan.Empty() {
|
|
// An empty span will never be equal to another span; see checkEqual for
|
|
// why. To avoid loading non-empty range keys further ahead by calling Next,
|
|
// return early.
|
|
i.iterPos = iterPosCurr
|
|
return i.iterSpan
|
|
}
|
|
i.saveCurrent()
|
|
|
|
i.iterPos = iterPosNext
|
|
i.iterSpan = i.iter.Next()
|
|
for i.iterSpan != nil {
|
|
if !i.equal(i.curr.End, i.iterSpan.Start) {
|
|
// Not a continuation.
|
|
break
|
|
}
|
|
if !i.checkEqual(i.iterSpan, &i.curr) {
|
|
// Not a continuation.
|
|
break
|
|
}
|
|
i.keyBuf = append(i.keyBuf[:0], i.iterSpan.End...)
|
|
i.curr.End = i.keyBuf
|
|
i.keysBuf = i.reduce(i.keysBuf, i.iterSpan.Keys)
|
|
i.iterSpan = i.iter.Next()
|
|
}
|
|
// i.iterSpan == nil
|
|
//
|
|
// The inner iterator may return nil when it encounters an error. If there
|
|
// was an error, we don't know whether there is another span we should
|
|
// defragment or not. Return nil so that the caller knows they should check
|
|
// Error().
|
|
if i.iter.Error() != nil {
|
|
return nil
|
|
}
|
|
i.curr.Keys = i.keysBuf
|
|
return &i.curr
|
|
}
|
|
|
|
// defragmentBackward defragments spans in the backward direction, starting from
|
|
// i.iter's current position. The span at the current position must be non-nil,
|
|
// but may be Empty().
|
|
func (i *DefragmentingIter) defragmentBackward() *Span {
|
|
if i.iterSpan.Empty() {
|
|
// An empty span will never be equal to another span; see checkEqual for
|
|
// why. To avoid loading non-empty range keys further ahead by calling Next,
|
|
// return early.
|
|
i.iterPos = iterPosCurr
|
|
return i.iterSpan
|
|
}
|
|
i.saveCurrent()
|
|
|
|
i.iterPos = iterPosPrev
|
|
i.iterSpan = i.iter.Prev()
|
|
for i.iterSpan != nil {
|
|
if !i.equal(i.curr.Start, i.iterSpan.End) {
|
|
// Not a continuation.
|
|
break
|
|
}
|
|
if !i.checkEqual(i.iterSpan, &i.curr) {
|
|
// Not a continuation.
|
|
break
|
|
}
|
|
i.keyBuf = append(i.keyBuf[:0], i.iterSpan.Start...)
|
|
i.curr.Start = i.keyBuf
|
|
i.keysBuf = i.reduce(i.keysBuf, i.iterSpan.Keys)
|
|
i.iterSpan = i.iter.Prev()
|
|
}
|
|
// i.iterSpan == nil
|
|
//
|
|
// The inner iterator may return nil when it encounters an error. If there
|
|
// was an error, we don't know whether there is another span we should
|
|
// defragment or not. Return nil so that the caller knows they should check
|
|
// Error().
|
|
if i.iter.Error() != nil {
|
|
return nil
|
|
}
|
|
i.curr.Keys = i.keysBuf
|
|
return &i.curr
|
|
}
|
|
|
|
func (i *DefragmentingIter) saveCurrent() {
|
|
i.currBuf.Reset()
|
|
i.keysBuf = i.keysBuf[:0]
|
|
i.keyBuf = i.keyBuf[:0]
|
|
if i.iterSpan == nil {
|
|
return
|
|
}
|
|
i.curr = Span{
|
|
Start: i.saveBytes(i.iterSpan.Start),
|
|
End: i.saveBytes(i.iterSpan.End),
|
|
KeysOrder: i.iterSpan.KeysOrder,
|
|
}
|
|
for j := range i.iterSpan.Keys {
|
|
i.keysBuf = append(i.keysBuf, Key{
|
|
Trailer: i.iterSpan.Keys[j].Trailer,
|
|
Suffix: i.saveBytes(i.iterSpan.Keys[j].Suffix),
|
|
Value: i.saveBytes(i.iterSpan.Keys[j].Value),
|
|
})
|
|
}
|
|
i.curr.Keys = i.keysBuf
|
|
}
|
|
|
|
func (i *DefragmentingIter) saveBytes(b []byte) []byte {
|
|
if b == nil {
|
|
return nil
|
|
}
|
|
i.currBuf, b = i.currBuf.Copy(b)
|
|
return b
|
|
}
|