mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2024-12-27 09:05:18 +00:00
910 lines
26 KiB
Go
910 lines
26 KiB
Go
// Copyright 2018. All rights reserved. Use of this source code is governed by
|
|
// an MIT-style license that can be found in the LICENSE file.
|
|
|
|
// Package cache implements the CLOCK-Pro caching algorithm.
|
|
//
|
|
// CLOCK-Pro is a patent-free alternative to the Adaptive Replacement Cache,
|
|
// https://en.wikipedia.org/wiki/Adaptive_replacement_cache.
|
|
// It is an approximation of LIRS ( https://en.wikipedia.org/wiki/LIRS_caching_algorithm ),
|
|
// much like the CLOCK page replacement algorithm is an approximation of LRU.
|
|
//
|
|
// This implementation is based on the python code from https://bitbucket.org/SamiLehtinen/pyclockpro .
|
|
//
|
|
// Slides describing the algorithm: http://fr.slideshare.net/huliang64/clockpro
|
|
//
|
|
// The original paper: http://static.usenix.org/event/usenix05/tech/general/full_papers/jiang/jiang_html/html.html
|
|
//
|
|
// It is MIT licensed, like the original.
|
|
package cache // import "github.com/cockroachdb/pebble/internal/cache"
|
|
|
|
import (
|
|
"fmt"
|
|
"os"
|
|
"runtime"
|
|
"runtime/debug"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
|
|
"github.com/cockroachdb/pebble/internal/base"
|
|
"github.com/cockroachdb/pebble/internal/invariants"
|
|
)
|
|
|
|
type fileKey struct {
|
|
// id is the namespace for fileNums.
|
|
id uint64
|
|
fileNum base.DiskFileNum
|
|
}
|
|
|
|
type key struct {
|
|
fileKey
|
|
offset uint64
|
|
}
|
|
|
|
// file returns the "file key" for the receiver. This is the key used for the
|
|
// shard.files map.
|
|
func (k key) file() key {
|
|
k.offset = 0
|
|
return k
|
|
}
|
|
|
|
func (k key) String() string {
|
|
return fmt.Sprintf("%d/%d/%d", k.id, k.fileNum, k.offset)
|
|
}
|
|
|
|
// Handle provides a strong reference to a value in the cache. The reference
|
|
// does not pin the value in the cache, but it does prevent the underlying byte
|
|
// slice from being reused.
|
|
type Handle struct {
|
|
value *Value
|
|
}
|
|
|
|
// Get returns the value stored in handle.
|
|
func (h Handle) Get() []byte {
|
|
if h.value != nil {
|
|
// NB: We don't increment shard.hits in this code path because we only want
|
|
// to record a hit when the handle is retrieved from the cache.
|
|
return h.value.buf
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Release releases the reference to the cache entry.
|
|
func (h Handle) Release() {
|
|
h.value.release()
|
|
}
|
|
|
|
type shard struct {
|
|
hits atomic.Int64
|
|
misses atomic.Int64
|
|
|
|
mu sync.RWMutex
|
|
|
|
reservedSize int64
|
|
maxSize int64
|
|
coldTarget int64
|
|
blocks robinHoodMap // fileNum+offset -> block
|
|
files robinHoodMap // fileNum -> list of blocks
|
|
|
|
// The blocks and files maps store values in manually managed memory that is
|
|
// invisible to the Go GC. This is fine for Value and entry objects that are
|
|
// stored in manually managed memory, but when the "invariants" build tag is
|
|
// set, all Value and entry objects are Go allocated and the entries map will
|
|
// contain a reference to every entry.
|
|
entries map[*entry]struct{}
|
|
|
|
handHot *entry
|
|
handCold *entry
|
|
handTest *entry
|
|
|
|
sizeHot int64
|
|
sizeCold int64
|
|
sizeTest int64
|
|
|
|
// The count fields are used exclusively for asserting expectations.
|
|
// We've seen infinite looping (cockroachdb/cockroach#70154) that
|
|
// could be explained by a corrupted sizeCold. Through asserting on
|
|
// these fields, we hope to gain more insight from any future
|
|
// reproductions.
|
|
countHot int64
|
|
countCold int64
|
|
countTest int64
|
|
}
|
|
|
|
func (c *shard) Get(id uint64, fileNum base.DiskFileNum, offset uint64) Handle {
|
|
c.mu.RLock()
|
|
var value *Value
|
|
if e := c.blocks.Get(key{fileKey{id, fileNum}, offset}); e != nil {
|
|
value = e.acquireValue()
|
|
if value != nil {
|
|
e.referenced.Store(true)
|
|
}
|
|
}
|
|
c.mu.RUnlock()
|
|
if value == nil {
|
|
c.misses.Add(1)
|
|
return Handle{}
|
|
}
|
|
c.hits.Add(1)
|
|
return Handle{value: value}
|
|
}
|
|
|
|
func (c *shard) Set(id uint64, fileNum base.DiskFileNum, offset uint64, value *Value) Handle {
|
|
if n := value.refs(); n != 1 {
|
|
panic(fmt.Sprintf("pebble: Value has already been added to the cache: refs=%d", n))
|
|
}
|
|
|
|
c.mu.Lock()
|
|
defer c.mu.Unlock()
|
|
|
|
k := key{fileKey{id, fileNum}, offset}
|
|
e := c.blocks.Get(k)
|
|
|
|
switch {
|
|
case e == nil:
|
|
// no cache entry? add it
|
|
e = newEntry(c, k, int64(len(value.buf)))
|
|
e.setValue(value)
|
|
if c.metaAdd(k, e) {
|
|
value.ref.trace("add-cold")
|
|
c.sizeCold += e.size
|
|
c.countCold++
|
|
} else {
|
|
value.ref.trace("skip-cold")
|
|
e.free()
|
|
e = nil
|
|
}
|
|
|
|
case e.peekValue() != nil:
|
|
// cache entry was a hot or cold page
|
|
e.setValue(value)
|
|
e.referenced.Store(true)
|
|
delta := int64(len(value.buf)) - e.size
|
|
e.size = int64(len(value.buf))
|
|
if e.ptype == etHot {
|
|
value.ref.trace("add-hot")
|
|
c.sizeHot += delta
|
|
} else {
|
|
value.ref.trace("add-cold")
|
|
c.sizeCold += delta
|
|
}
|
|
c.evict()
|
|
|
|
default:
|
|
// cache entry was a test page
|
|
c.sizeTest -= e.size
|
|
c.countTest--
|
|
c.metaDel(e).release()
|
|
c.metaCheck(e)
|
|
|
|
e.size = int64(len(value.buf))
|
|
c.coldTarget += e.size
|
|
if c.coldTarget > c.targetSize() {
|
|
c.coldTarget = c.targetSize()
|
|
}
|
|
|
|
e.referenced.Store(false)
|
|
e.setValue(value)
|
|
e.ptype = etHot
|
|
if c.metaAdd(k, e) {
|
|
value.ref.trace("add-hot")
|
|
c.sizeHot += e.size
|
|
c.countHot++
|
|
} else {
|
|
value.ref.trace("skip-hot")
|
|
e.free()
|
|
e = nil
|
|
}
|
|
}
|
|
|
|
c.checkConsistency()
|
|
|
|
// Values are initialized with a reference count of 1. That reference count
|
|
// is being transferred to the returned Handle.
|
|
return Handle{value: value}
|
|
}
|
|
|
|
func (c *shard) checkConsistency() {
|
|
// See the comment above the count{Hot,Cold,Test} fields.
|
|
switch {
|
|
case c.sizeHot < 0 || c.sizeCold < 0 || c.sizeTest < 0 || c.countHot < 0 || c.countCold < 0 || c.countTest < 0:
|
|
panic(fmt.Sprintf("pebble: unexpected negative: %d (%d bytes) hot, %d (%d bytes) cold, %d (%d bytes) test",
|
|
c.countHot, c.sizeHot, c.countCold, c.sizeCold, c.countTest, c.sizeTest))
|
|
case c.sizeHot > 0 && c.countHot == 0:
|
|
panic(fmt.Sprintf("pebble: mismatch %d hot size, %d hot count", c.sizeHot, c.countHot))
|
|
case c.sizeCold > 0 && c.countCold == 0:
|
|
panic(fmt.Sprintf("pebble: mismatch %d cold size, %d cold count", c.sizeCold, c.countCold))
|
|
case c.sizeTest > 0 && c.countTest == 0:
|
|
panic(fmt.Sprintf("pebble: mismatch %d test size, %d test count", c.sizeTest, c.countTest))
|
|
}
|
|
}
|
|
|
|
// Delete deletes the cached value for the specified file and offset.
|
|
func (c *shard) Delete(id uint64, fileNum base.DiskFileNum, offset uint64) {
|
|
// The common case is there is nothing to delete, so do a quick check with
|
|
// shared lock.
|
|
k := key{fileKey{id, fileNum}, offset}
|
|
c.mu.RLock()
|
|
exists := c.blocks.Get(k) != nil
|
|
c.mu.RUnlock()
|
|
if !exists {
|
|
return
|
|
}
|
|
|
|
var deletedValue *Value
|
|
func() {
|
|
c.mu.Lock()
|
|
defer c.mu.Unlock()
|
|
|
|
e := c.blocks.Get(k)
|
|
if e == nil {
|
|
return
|
|
}
|
|
deletedValue = c.metaEvict(e)
|
|
c.checkConsistency()
|
|
}()
|
|
// Now that the mutex has been dropped, release the reference which will
|
|
// potentially free the memory associated with the previous cached value.
|
|
deletedValue.release()
|
|
}
|
|
|
|
// EvictFile evicts all of the cache values for the specified file.
|
|
func (c *shard) EvictFile(id uint64, fileNum base.DiskFileNum) {
|
|
fkey := key{fileKey{id, fileNum}, 0}
|
|
for c.evictFileRun(fkey) {
|
|
// Sched switch to give another goroutine an opportunity to acquire the
|
|
// shard mutex.
|
|
runtime.Gosched()
|
|
}
|
|
}
|
|
|
|
func (c *shard) evictFileRun(fkey key) (moreRemaining bool) {
|
|
// If most of the file's blocks are held in the block cache, evicting all
|
|
// the blocks may take a while. We don't want to block the entire cache
|
|
// shard, forcing concurrent readers to wait until we're finished. We drop
|
|
// the mutex every [blocksPerMutexAcquisition] blocks to give other
|
|
// goroutines an opportunity to make progress.
|
|
const blocksPerMutexAcquisition = 5
|
|
c.mu.Lock()
|
|
|
|
// Releasing a value may result in free-ing it back to the memory allocator.
|
|
// This can have a nontrivial cost that we'd prefer to not pay while holding
|
|
// the shard mutex, so we collect the evicted values in a local slice and
|
|
// only release them in a defer after dropping the cache mutex.
|
|
var obsoleteValuesAlloc [blocksPerMutexAcquisition]*Value
|
|
obsoleteValues := obsoleteValuesAlloc[:0]
|
|
defer func() {
|
|
c.mu.Unlock()
|
|
for _, v := range obsoleteValues {
|
|
v.release()
|
|
}
|
|
}()
|
|
|
|
blocks := c.files.Get(fkey)
|
|
if blocks == nil {
|
|
// No blocks for this file.
|
|
return false
|
|
}
|
|
|
|
// b is the current head of the doubly linked list, and n is the entry after b.
|
|
for b, n := blocks, (*entry)(nil); len(obsoleteValues) < cap(obsoleteValues); b = n {
|
|
n = b.fileLink.next
|
|
obsoleteValues = append(obsoleteValues, c.metaEvict(b))
|
|
if b == n {
|
|
// b == n represents the case where b was the last entry remaining
|
|
// in the doubly linked list, which is why it pointed at itself. So
|
|
// no more entries left.
|
|
c.checkConsistency()
|
|
return false
|
|
}
|
|
}
|
|
// Exhausted blocksPerMutexAcquisition.
|
|
return true
|
|
}
|
|
|
|
func (c *shard) Free() {
|
|
c.mu.Lock()
|
|
defer c.mu.Unlock()
|
|
|
|
// NB: we use metaDel rather than metaEvict in order to avoid the expensive
|
|
// metaCheck call when the "invariants" build tag is specified.
|
|
for c.handHot != nil {
|
|
e := c.handHot
|
|
c.metaDel(c.handHot).release()
|
|
e.free()
|
|
}
|
|
|
|
c.blocks.free()
|
|
c.files.free()
|
|
}
|
|
|
|
func (c *shard) Reserve(n int) {
|
|
c.mu.Lock()
|
|
defer c.mu.Unlock()
|
|
c.reservedSize += int64(n)
|
|
|
|
// Changing c.reservedSize will either increase or decrease
|
|
// the targetSize. But we want coldTarget to be in the range
|
|
// [0, targetSize]. So, if c.targetSize decreases, make sure
|
|
// that the coldTarget fits within the limits.
|
|
targetSize := c.targetSize()
|
|
if c.coldTarget > targetSize {
|
|
c.coldTarget = targetSize
|
|
}
|
|
|
|
c.evict()
|
|
c.checkConsistency()
|
|
}
|
|
|
|
// Size returns the current space used by the cache.
|
|
func (c *shard) Size() int64 {
|
|
c.mu.RLock()
|
|
size := c.sizeHot + c.sizeCold
|
|
c.mu.RUnlock()
|
|
return size
|
|
}
|
|
|
|
func (c *shard) targetSize() int64 {
|
|
target := c.maxSize - c.reservedSize
|
|
// Always return a positive integer for targetSize. This is so that we don't
|
|
// end up in an infinite loop in evict(), in cases where reservedSize is
|
|
// greater than or equal to maxSize.
|
|
if target < 1 {
|
|
return 1
|
|
}
|
|
return target
|
|
}
|
|
|
|
// Add the entry to the cache, returning true if the entry was added and false
|
|
// if it would not fit in the cache.
|
|
func (c *shard) metaAdd(key key, e *entry) bool {
|
|
c.evict()
|
|
if e.size > c.targetSize() {
|
|
// The entry is larger than the target cache size.
|
|
return false
|
|
}
|
|
|
|
c.blocks.Put(key, e)
|
|
if entriesGoAllocated {
|
|
// Go allocated entries need to be referenced from Go memory. The entries
|
|
// map provides that reference.
|
|
c.entries[e] = struct{}{}
|
|
}
|
|
|
|
if c.handHot == nil {
|
|
// first element
|
|
c.handHot = e
|
|
c.handCold = e
|
|
c.handTest = e
|
|
} else {
|
|
c.handHot.link(e)
|
|
}
|
|
|
|
if c.handCold == c.handHot {
|
|
c.handCold = c.handCold.prev()
|
|
}
|
|
|
|
fkey := key.file()
|
|
if fileBlocks := c.files.Get(fkey); fileBlocks == nil {
|
|
c.files.Put(fkey, e)
|
|
} else {
|
|
fileBlocks.linkFile(e)
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Remove the entry from the cache. This removes the entry from the blocks map,
|
|
// the files map, and ensures that hand{Hot,Cold,Test} are not pointing at the
|
|
// entry. Returns the deleted value that must be released, if any.
|
|
func (c *shard) metaDel(e *entry) (deletedValue *Value) {
|
|
if value := e.peekValue(); value != nil {
|
|
value.ref.trace("metaDel")
|
|
}
|
|
// Remove the pointer to the value.
|
|
deletedValue = e.val
|
|
e.val = nil
|
|
|
|
c.blocks.Delete(e.key)
|
|
if entriesGoAllocated {
|
|
// Go allocated entries need to be referenced from Go memory. The entries
|
|
// map provides that reference.
|
|
delete(c.entries, e)
|
|
}
|
|
|
|
if e == c.handHot {
|
|
c.handHot = c.handHot.prev()
|
|
}
|
|
if e == c.handCold {
|
|
c.handCold = c.handCold.prev()
|
|
}
|
|
if e == c.handTest {
|
|
c.handTest = c.handTest.prev()
|
|
}
|
|
|
|
if e.unlink() == e {
|
|
// This was the last entry in the cache.
|
|
c.handHot = nil
|
|
c.handCold = nil
|
|
c.handTest = nil
|
|
}
|
|
|
|
fkey := e.key.file()
|
|
if next := e.unlinkFile(); e == next {
|
|
c.files.Delete(fkey)
|
|
} else {
|
|
c.files.Put(fkey, next)
|
|
}
|
|
return deletedValue
|
|
}
|
|
|
|
// Check that the specified entry is not referenced by the cache.
|
|
func (c *shard) metaCheck(e *entry) {
|
|
if invariants.Enabled {
|
|
if _, ok := c.entries[e]; ok {
|
|
fmt.Fprintf(os.Stderr, "%p: %s unexpectedly found in entries map\n%s",
|
|
e, e.key, debug.Stack())
|
|
os.Exit(1)
|
|
}
|
|
if c.blocks.findByValue(e) != nil {
|
|
fmt.Fprintf(os.Stderr, "%p: %s unexpectedly found in blocks map\n%s\n%s",
|
|
e, e.key, &c.blocks, debug.Stack())
|
|
os.Exit(1)
|
|
}
|
|
if c.files.findByValue(e) != nil {
|
|
fmt.Fprintf(os.Stderr, "%p: %s unexpectedly found in files map\n%s\n%s",
|
|
e, e.key, &c.files, debug.Stack())
|
|
os.Exit(1)
|
|
}
|
|
// NB: c.hand{Hot,Cold,Test} are pointers into a single linked list. We
|
|
// only have to traverse one of them to check all of them.
|
|
var countHot, countCold, countTest int64
|
|
var sizeHot, sizeCold, sizeTest int64
|
|
for t := c.handHot.next(); t != nil; t = t.next() {
|
|
// Recompute count{Hot,Cold,Test} and size{Hot,Cold,Test}.
|
|
switch t.ptype {
|
|
case etHot:
|
|
countHot++
|
|
sizeHot += t.size
|
|
case etCold:
|
|
countCold++
|
|
sizeCold += t.size
|
|
case etTest:
|
|
countTest++
|
|
sizeTest += t.size
|
|
}
|
|
if e == t {
|
|
fmt.Fprintf(os.Stderr, "%p: %s unexpectedly found in blocks list\n%s",
|
|
e, e.key, debug.Stack())
|
|
os.Exit(1)
|
|
}
|
|
if t == c.handHot {
|
|
break
|
|
}
|
|
}
|
|
if countHot != c.countHot || countCold != c.countCold || countTest != c.countTest ||
|
|
sizeHot != c.sizeHot || sizeCold != c.sizeCold || sizeTest != c.sizeTest {
|
|
fmt.Fprintf(os.Stderr, `divergence of Hot,Cold,Test statistics
|
|
cache's statistics: hot %d, %d, cold %d, %d, test %d, %d
|
|
recalculated statistics: hot %d, %d, cold %d, %d, test %d, %d\n%s`,
|
|
c.countHot, c.sizeHot, c.countCold, c.sizeCold, c.countTest, c.sizeTest,
|
|
countHot, sizeHot, countCold, sizeCold, countTest, sizeTest,
|
|
debug.Stack())
|
|
os.Exit(1)
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *shard) metaEvict(e *entry) (evictedValue *Value) {
|
|
switch e.ptype {
|
|
case etHot:
|
|
c.sizeHot -= e.size
|
|
c.countHot--
|
|
case etCold:
|
|
c.sizeCold -= e.size
|
|
c.countCold--
|
|
case etTest:
|
|
c.sizeTest -= e.size
|
|
c.countTest--
|
|
}
|
|
evictedValue = c.metaDel(e)
|
|
c.metaCheck(e)
|
|
e.free()
|
|
return evictedValue
|
|
}
|
|
|
|
func (c *shard) evict() {
|
|
for c.targetSize() <= c.sizeHot+c.sizeCold && c.handCold != nil {
|
|
c.runHandCold(c.countCold, c.sizeCold)
|
|
}
|
|
}
|
|
|
|
func (c *shard) runHandCold(countColdDebug, sizeColdDebug int64) {
|
|
// countColdDebug and sizeColdDebug should equal c.countCold and
|
|
// c.sizeCold. They're parameters only to aid in debugging of
|
|
// cockroachdb/cockroach#70154. Since they're parameters, their
|
|
// arguments will appear within stack traces should we encounter
|
|
// a reproduction.
|
|
if c.countCold != countColdDebug || c.sizeCold != sizeColdDebug {
|
|
panic(fmt.Sprintf("runHandCold: cold count and size are %d, %d, arguments are %d and %d",
|
|
c.countCold, c.sizeCold, countColdDebug, sizeColdDebug))
|
|
}
|
|
|
|
e := c.handCold
|
|
if e.ptype == etCold {
|
|
if e.referenced.Load() {
|
|
e.referenced.Store(false)
|
|
e.ptype = etHot
|
|
c.sizeCold -= e.size
|
|
c.countCold--
|
|
c.sizeHot += e.size
|
|
c.countHot++
|
|
} else {
|
|
e.setValue(nil)
|
|
e.ptype = etTest
|
|
c.sizeCold -= e.size
|
|
c.countCold--
|
|
c.sizeTest += e.size
|
|
c.countTest++
|
|
for c.targetSize() < c.sizeTest && c.handTest != nil {
|
|
c.runHandTest()
|
|
}
|
|
}
|
|
}
|
|
|
|
c.handCold = c.handCold.next()
|
|
|
|
for c.targetSize()-c.coldTarget <= c.sizeHot && c.handHot != nil {
|
|
c.runHandHot()
|
|
}
|
|
}
|
|
|
|
func (c *shard) runHandHot() {
|
|
if c.handHot == c.handTest && c.handTest != nil {
|
|
c.runHandTest()
|
|
if c.handHot == nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
e := c.handHot
|
|
if e.ptype == etHot {
|
|
if e.referenced.Load() {
|
|
e.referenced.Store(false)
|
|
} else {
|
|
e.ptype = etCold
|
|
c.sizeHot -= e.size
|
|
c.countHot--
|
|
c.sizeCold += e.size
|
|
c.countCold++
|
|
}
|
|
}
|
|
|
|
c.handHot = c.handHot.next()
|
|
}
|
|
|
|
func (c *shard) runHandTest() {
|
|
if c.sizeCold > 0 && c.handTest == c.handCold && c.handCold != nil {
|
|
// sizeCold is > 0, so assert that countCold == 0. See the
|
|
// comment above count{Hot,Cold,Test}.
|
|
if c.countCold == 0 {
|
|
panic(fmt.Sprintf("pebble: mismatch %d cold size, %d cold count", c.sizeCold, c.countCold))
|
|
}
|
|
|
|
c.runHandCold(c.countCold, c.sizeCold)
|
|
if c.handTest == nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
e := c.handTest
|
|
if e.ptype == etTest {
|
|
c.sizeTest -= e.size
|
|
c.countTest--
|
|
c.coldTarget -= e.size
|
|
if c.coldTarget < 0 {
|
|
c.coldTarget = 0
|
|
}
|
|
c.metaDel(e).release()
|
|
c.metaCheck(e)
|
|
e.free()
|
|
}
|
|
|
|
c.handTest = c.handTest.next()
|
|
}
|
|
|
|
// Metrics holds metrics for the cache.
|
|
type Metrics struct {
|
|
// The number of bytes inuse by the cache.
|
|
Size int64
|
|
// The count of objects (blocks or tables) in the cache.
|
|
Count int64
|
|
// The number of cache hits.
|
|
Hits int64
|
|
// The number of cache misses.
|
|
Misses int64
|
|
}
|
|
|
|
// Cache implements Pebble's sharded block cache. The Clock-PRO algorithm is
|
|
// used for page replacement
|
|
// (http://static.usenix.org/event/usenix05/tech/general/full_papers/jiang/jiang_html/html.html). In
|
|
// order to provide better concurrency, 4 x NumCPUs shards are created, with
|
|
// each shard being given 1/n of the target cache size. The Clock-PRO algorithm
|
|
// is run independently on each shard.
|
|
//
|
|
// Blocks are keyed by an (id, fileNum, offset) triple. The ID is a namespace
|
|
// for file numbers and allows a single Cache to be shared between multiple
|
|
// Pebble instances. The fileNum and offset refer to an sstable file number and
|
|
// the offset of the block within the file. Because sstables are immutable and
|
|
// file numbers are never reused, (fileNum,offset) are unique for the lifetime
|
|
// of a Pebble instance.
|
|
//
|
|
// In addition to maintaining a map from (fileNum,offset) to data, each shard
|
|
// maintains a map of the cached blocks for a particular fileNum. This allows
|
|
// efficient eviction of all of the blocks for a file which is used when an
|
|
// sstable is deleted from disk.
|
|
//
|
|
// # Memory Management
|
|
//
|
|
// In order to reduce pressure on the Go GC, manual memory management is
|
|
// performed for the data stored in the cache. Manual memory management is
|
|
// performed by calling into C.{malloc,free} to allocate memory. Cache.Values
|
|
// are reference counted and the memory backing a manual value is freed when
|
|
// the reference count drops to 0.
|
|
//
|
|
// Manual memory management brings the possibility of memory leaks. It is
|
|
// imperative that every Handle returned by Cache.{Get,Set} is eventually
|
|
// released. The "invariants" build tag enables a leak detection facility that
|
|
// places a GC finalizer on cache.Value. When the cache.Value finalizer is run,
|
|
// if the underlying buffer is still present a leak has occurred. The "tracing"
|
|
// build tag enables tracing of cache.Value reference count manipulation and
|
|
// eases finding where a leak has occurred. These two facilities are usually
|
|
// used in combination by specifying `-tags invariants,tracing`. Note that
|
|
// "tracing" produces a significant slowdown, while "invariants" does not.
|
|
type Cache struct {
|
|
refs atomic.Int64
|
|
maxSize int64
|
|
idAlloc atomic.Uint64
|
|
shards []shard
|
|
|
|
// Traces recorded by Cache.trace. Used for debugging.
|
|
tr struct {
|
|
sync.Mutex
|
|
msgs []string
|
|
}
|
|
}
|
|
|
|
// New creates a new cache of the specified size. Memory for the cache is
|
|
// allocated on demand, not during initialization. The cache is created with a
|
|
// reference count of 1. Each DB it is associated with adds a reference, so the
|
|
// creator of the cache should usually release their reference after the DB is
|
|
// created.
|
|
//
|
|
// c := cache.New(...)
|
|
// defer c.Unref()
|
|
// d, err := pebble.Open(pebble.Options{Cache: c})
|
|
func New(size int64) *Cache {
|
|
// How many cache shards should we create?
|
|
//
|
|
// Note that the probability two processors will try to access the same
|
|
// shard at the same time increases superlinearly with the number of
|
|
// processors (Eg, consider the brithday problem where each CPU is a person,
|
|
// and each shard is a possible birthday).
|
|
//
|
|
// We could consider growing the number of shards superlinearly, but
|
|
// increasing the shard count may reduce the effectiveness of the caching
|
|
// algorithm if frequently-accessed blocks are insufficiently distributed
|
|
// across shards. If a shard's size is smaller than a single frequently
|
|
// scanned sstable, then the shard will be unable to hold the entire
|
|
// frequently-scanned table in memory despite other shards still holding
|
|
// infrequently accessed blocks.
|
|
//
|
|
// Experimentally, we've observed contention contributing to tail latencies
|
|
// at 2 shards per processor. For now we use 4 shards per processor,
|
|
// recognizing this may not be final word.
|
|
m := 4 * runtime.GOMAXPROCS(0)
|
|
|
|
// In tests we can use large CPU machines with small cache sizes and have
|
|
// many caches in existence at a time. If sharding into m shards would
|
|
// produce too small shards, constrain the number of shards to 4.
|
|
const minimumShardSize = 4 << 20 // 4 MiB
|
|
if m > 4 && int(size)/m < minimumShardSize {
|
|
m = 4
|
|
}
|
|
return newShards(size, m)
|
|
}
|
|
|
|
func newShards(size int64, shards int) *Cache {
|
|
c := &Cache{
|
|
maxSize: size,
|
|
shards: make([]shard, shards),
|
|
}
|
|
c.refs.Store(1)
|
|
c.idAlloc.Store(1)
|
|
c.trace("alloc", c.refs.Load())
|
|
for i := range c.shards {
|
|
c.shards[i] = shard{
|
|
maxSize: size / int64(len(c.shards)),
|
|
coldTarget: size / int64(len(c.shards)),
|
|
}
|
|
if entriesGoAllocated {
|
|
c.shards[i].entries = make(map[*entry]struct{})
|
|
}
|
|
c.shards[i].blocks.init(16)
|
|
c.shards[i].files.init(16)
|
|
}
|
|
|
|
// Note: this is a no-op if invariants are disabled or race is enabled.
|
|
invariants.SetFinalizer(c, func(obj interface{}) {
|
|
c := obj.(*Cache)
|
|
if v := c.refs.Load(); v != 0 {
|
|
c.tr.Lock()
|
|
fmt.Fprintf(os.Stderr,
|
|
"pebble: cache (%p) has non-zero reference count: %d\n", c, v)
|
|
if len(c.tr.msgs) > 0 {
|
|
fmt.Fprintf(os.Stderr, "%s\n", strings.Join(c.tr.msgs, "\n"))
|
|
}
|
|
c.tr.Unlock()
|
|
os.Exit(1)
|
|
}
|
|
})
|
|
return c
|
|
}
|
|
|
|
func (c *Cache) getShard(id uint64, fileNum base.DiskFileNum, offset uint64) *shard {
|
|
if id == 0 {
|
|
panic("pebble: 0 cache ID is invalid")
|
|
}
|
|
|
|
// Inlined version of fnv.New64 + Write.
|
|
const offset64 = 14695981039346656037
|
|
const prime64 = 1099511628211
|
|
|
|
h := uint64(offset64)
|
|
for i := 0; i < 8; i++ {
|
|
h *= prime64
|
|
h ^= uint64(id & 0xff)
|
|
id >>= 8
|
|
}
|
|
fileNumVal := uint64(fileNum.FileNum())
|
|
for i := 0; i < 8; i++ {
|
|
h *= prime64
|
|
h ^= uint64(fileNumVal) & 0xff
|
|
fileNumVal >>= 8
|
|
}
|
|
for i := 0; i < 8; i++ {
|
|
h *= prime64
|
|
h ^= uint64(offset & 0xff)
|
|
offset >>= 8
|
|
}
|
|
|
|
return &c.shards[h%uint64(len(c.shards))]
|
|
}
|
|
|
|
// Ref adds a reference to the cache. The cache only remains valid as long a
|
|
// reference is maintained to it.
|
|
func (c *Cache) Ref() {
|
|
v := c.refs.Add(1)
|
|
if v <= 1 {
|
|
panic(fmt.Sprintf("pebble: inconsistent reference count: %d", v))
|
|
}
|
|
c.trace("ref", v)
|
|
}
|
|
|
|
// Unref releases a reference on the cache.
|
|
func (c *Cache) Unref() {
|
|
v := c.refs.Add(-1)
|
|
c.trace("unref", v)
|
|
switch {
|
|
case v < 0:
|
|
panic(fmt.Sprintf("pebble: inconsistent reference count: %d", v))
|
|
case v == 0:
|
|
for i := range c.shards {
|
|
c.shards[i].Free()
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get retrieves the cache value for the specified file and offset, returning
|
|
// nil if no value is present.
|
|
func (c *Cache) Get(id uint64, fileNum base.DiskFileNum, offset uint64) Handle {
|
|
return c.getShard(id, fileNum, offset).Get(id, fileNum, offset)
|
|
}
|
|
|
|
// Set sets the cache value for the specified file and offset, overwriting an
|
|
// existing value if present. A Handle is returned which provides faster
|
|
// retrieval of the cached value than Get (lock-free and avoidance of the map
|
|
// lookup). The value must have been allocated by Cache.Alloc.
|
|
func (c *Cache) Set(id uint64, fileNum base.DiskFileNum, offset uint64, value *Value) Handle {
|
|
return c.getShard(id, fileNum, offset).Set(id, fileNum, offset, value)
|
|
}
|
|
|
|
// Delete deletes the cached value for the specified file and offset.
|
|
func (c *Cache) Delete(id uint64, fileNum base.DiskFileNum, offset uint64) {
|
|
c.getShard(id, fileNum, offset).Delete(id, fileNum, offset)
|
|
}
|
|
|
|
// EvictFile evicts all of the cache values for the specified file.
|
|
func (c *Cache) EvictFile(id uint64, fileNum base.DiskFileNum) {
|
|
if id == 0 {
|
|
panic("pebble: 0 cache ID is invalid")
|
|
}
|
|
for i := range c.shards {
|
|
c.shards[i].EvictFile(id, fileNum)
|
|
}
|
|
}
|
|
|
|
// MaxSize returns the max size of the cache.
|
|
func (c *Cache) MaxSize() int64 {
|
|
return c.maxSize
|
|
}
|
|
|
|
// Size returns the current space used by the cache.
|
|
func (c *Cache) Size() int64 {
|
|
var size int64
|
|
for i := range c.shards {
|
|
size += c.shards[i].Size()
|
|
}
|
|
return size
|
|
}
|
|
|
|
// Alloc allocates a byte slice of the specified size, possibly reusing
|
|
// previously allocated but unused memory. The memory backing the value is
|
|
// manually managed. The caller MUST either add the value to the cache (via
|
|
// Cache.Set), or release the value (via Cache.Free). Failure to do so will
|
|
// result in a memory leak.
|
|
func Alloc(n int) *Value {
|
|
return newValue(n)
|
|
}
|
|
|
|
// Free frees the specified value. The buffer associated with the value will
|
|
// possibly be reused, making it invalid to use the buffer after calling
|
|
// Free. Do not call Free on a value that has been added to the cache.
|
|
func Free(v *Value) {
|
|
if n := v.refs(); n > 1 {
|
|
panic(fmt.Sprintf("pebble: Value has been added to the cache: refs=%d", n))
|
|
}
|
|
v.release()
|
|
}
|
|
|
|
// Reserve N bytes in the cache. This effectively shrinks the size of the cache
|
|
// by N bytes, without actually consuming any memory. The returned closure
|
|
// should be invoked to release the reservation.
|
|
func (c *Cache) Reserve(n int) func() {
|
|
// Round-up the per-shard reservation. Most reservations should be large, so
|
|
// this probably doesn't matter in practice.
|
|
shardN := (n + len(c.shards) - 1) / len(c.shards)
|
|
for i := range c.shards {
|
|
c.shards[i].Reserve(shardN)
|
|
}
|
|
return func() {
|
|
if shardN == -1 {
|
|
panic("pebble: cache reservation already released")
|
|
}
|
|
for i := range c.shards {
|
|
c.shards[i].Reserve(-shardN)
|
|
}
|
|
shardN = -1
|
|
}
|
|
}
|
|
|
|
// Metrics returns the metrics for the cache.
|
|
func (c *Cache) Metrics() Metrics {
|
|
var m Metrics
|
|
for i := range c.shards {
|
|
s := &c.shards[i]
|
|
s.mu.RLock()
|
|
m.Count += int64(s.blocks.Count())
|
|
m.Size += s.sizeHot + s.sizeCold
|
|
s.mu.RUnlock()
|
|
m.Hits += s.hits.Load()
|
|
m.Misses += s.misses.Load()
|
|
}
|
|
return m
|
|
}
|
|
|
|
// NewID returns a new ID to be used as a namespace for cached file
|
|
// blocks.
|
|
func (c *Cache) NewID() uint64 {
|
|
return c.idAlloc.Add(1)
|
|
}
|