mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2024-12-27 17:15:18 +00:00
1210 lines
42 KiB
Go
1210 lines
42 KiB
Go
// Copyright 2022 The LevelDB-Go and Pebble Authors. All rights reserved. Use
|
|
// of this source code is governed by a BSD-style license that can be found in
|
|
// the LICENSE file.
|
|
|
|
package keyspan
|
|
|
|
import (
|
|
"bytes"
|
|
"fmt"
|
|
"sort"
|
|
|
|
"github.com/cockroachdb/pebble/internal/base"
|
|
"github.com/cockroachdb/pebble/internal/invariants"
|
|
"github.com/cockroachdb/pebble/internal/manifest"
|
|
)
|
|
|
|
// TODO(jackson): Consider implementing an optimization to seek lower levels
|
|
// past higher levels' RANGEKEYDELs. This would be analaogous to the
|
|
// optimization pebble.mergingIter performs for RANGEDELs during point key
|
|
// seeks. It may not be worth it, because range keys are rare and cascading
|
|
// seeks would require introducing key comparisons to switchTo{Min,Max}Heap
|
|
// where there currently are none.
|
|
|
|
// TODO(jackson): There are several opportunities to use base.Equal in the
|
|
// MergingIter implementation, but will require a bit of plumbing to thread the
|
|
// Equal function.
|
|
|
|
// MergingIter merges spans across levels of the LSM, exposing an iterator over
|
|
// spans that yields sets of spans fragmented at unique user key boundaries.
|
|
//
|
|
// A MergingIter is initialized with an arbitrary number of child iterators over
|
|
// fragmented spans. Each child iterator exposes fragmented key spans, such that
|
|
// overlapping keys are surfaced in a single Span. Key spans from one child
|
|
// iterator may overlap key spans from another child iterator arbitrarily.
|
|
//
|
|
// The spans combined by MergingIter will return spans with keys sorted by
|
|
// trailer descending. If the MergingIter is configured with a Transformer, it's
|
|
// permitted to modify the ordering of the spans' keys returned by MergingIter.
|
|
//
|
|
// # Algorithm
|
|
//
|
|
// The merging iterator wraps child iterators, merging and fragmenting spans
|
|
// across levels. The high-level algorithm is:
|
|
//
|
|
// 1. Initialize the heap with bound keys from child iterators' spans.
|
|
// 2. Find the next [or previous] two unique user keys' from bounds.
|
|
// 3. Consider the span formed between the two unique user keys a candidate
|
|
// span.
|
|
// 4. Determine if any of the child iterators' spans overlap the candidate
|
|
// span.
|
|
// 4a. If any of the child iterator's current bounds are end keys
|
|
// (during forward iteration) or start keys (during reverse
|
|
// iteration), then all the spans with that bound overlap the
|
|
// candidate span.
|
|
// 4b. Apply the configured transform, which may remove keys.
|
|
// 4c. If no spans overlap, forget the smallest (forward iteration)
|
|
// or largest (reverse iteration) unique user key and advance
|
|
// the iterators to the next unique user key. Start again from 3.
|
|
//
|
|
// # Detailed algorithm
|
|
//
|
|
// Each level (i0, i1, ...) has a user-provided input FragmentIterator. The
|
|
// merging iterator steps through individual boundaries of the underlying
|
|
// spans separately. If the underlying FragmentIterator has fragments
|
|
// [a,b){#2,#1} [b,c){#1} the mergingIterLevel.{next,prev} step through:
|
|
//
|
|
// (a, start), (b, end), (b, start), (c, end)
|
|
//
|
|
// Note that (a, start) and (b, end) are observed ONCE each, despite two keys
|
|
// sharing those bounds. Also note that (b, end) and (b, start) are two distinct
|
|
// iterator positions of a mergingIterLevel.
|
|
//
|
|
// The merging iterator maintains a heap (min during forward iteration, max
|
|
// during reverse iteration) containing the boundKeys. Each boundKey is a
|
|
// 3-tuple holding the bound user key, whether the bound is a start or end key
|
|
// and the set of keys from that level that have that bound. The heap orders
|
|
// based on the boundKey's user key only.
|
|
//
|
|
// The merging iterator is responsible for merging spans across levels to
|
|
// determine which span is next, but it's also responsible for fragmenting
|
|
// overlapping spans. Consider the example:
|
|
//
|
|
// i0: b---d e-----h
|
|
// i1: a---c h-----k
|
|
// i2: a------------------------------p
|
|
//
|
|
// fragments: a-b-c-d-e-----h-----k----------p
|
|
//
|
|
// None of the individual child iterators contain a span with the exact bounds
|
|
// [c,d), but the merging iterator must produce a span [c,d). To accomplish
|
|
// this, the merging iterator visits every span between unique boundary user
|
|
// keys. In the above example, this is:
|
|
//
|
|
// [a,b), [b,c), [c,d), [d,e), [e, h), [h, k), [k, p)
|
|
//
|
|
// The merging iterator first initializes the heap to prepare for iteration.
|
|
// The description below discusses the mechanics of forward iteration after a
|
|
// call to First, but the mechanics are similar for reverse iteration and
|
|
// other positioning methods.
|
|
//
|
|
// During a call to First, the heap is initialized by seeking every
|
|
// mergingIterLevel to the first bound of the first fragment. In the above
|
|
// example, this seeks the child iterators to:
|
|
//
|
|
// i0: (b, boundKindFragmentStart, [ [b,d) ])
|
|
// i1: (a, boundKindFragmentStart, [ [a,c) ])
|
|
// i2: (a, boundKindFragmentStart, [ [a,p) ])
|
|
//
|
|
// After fixing up the heap, the root of the heap is a boundKey with the
|
|
// smallest user key ('a' in the example). Once the heap is setup for iteration
|
|
// in the appropriate direction and location, the merging iterator uses
|
|
// find{Next,Prev}FragmentSet to find the next/previous span bounds.
|
|
//
|
|
// During forward iteration, the root of the heap's user key is the start key
|
|
// key of next merged span. findNextFragmentSet sets m.start to this user
|
|
// key. The heap may contain other boundKeys with the same user key if another
|
|
// level has a fragment starting or ending at the same key, so the
|
|
// findNextFragmentSet method pulls from the heap until it finds the first key
|
|
// greater than m.start. This key is used as the end key.
|
|
//
|
|
// In the above example, this results in m.start = 'a', m.end = 'b' and child
|
|
// iterators in the following positions:
|
|
//
|
|
// i0: (b, boundKindFragmentStart, [ [b,d) ])
|
|
// i1: (c, boundKindFragmentEnd, [ [a,c) ])
|
|
// i2: (p, boundKindFragmentEnd, [ [a,p) ])
|
|
//
|
|
// With the user key bounds of the next merged span established,
|
|
// findNextFragmentSet must determine which, if any, fragments overlap the span.
|
|
// During forward iteration any child iterator that is now positioned at an end
|
|
// boundary has an overlapping span. (Justification: The child iterator's end
|
|
// boundary is ≥ m.end. The corresponding start boundary must be ≤ m.start since
|
|
// there were no other user keys between m.start and m.end. So the fragments
|
|
// associated with the iterator's current end boundary have start and end bounds
|
|
// such that start ≤ m.start < m.end ≤ end).
|
|
//
|
|
// findNextFragmentSet iterates over the levels, collecting keys from any child
|
|
// iterators positioned at end boundaries. In the above example, i1 and i2 are
|
|
// positioned at end boundaries, so findNextFragmentSet collects the keys of
|
|
// [a,c) and [a,p). These spans contain the merging iterator's [m.start, m.end)
|
|
// span, but they may also extend beyond the m.start and m.end. The merging
|
|
// iterator returns the keys with the merging iter's m.start and m.end bounds,
|
|
// preserving the underlying keys' sequence numbers, key kinds and values.
|
|
//
|
|
// A MergingIter is configured with a Transform that's applied to the span
|
|
// before surfacing it to the iterator user. A Transform may remove keys
|
|
// arbitrarily, but it may not modify the values themselves.
|
|
//
|
|
// It may be the case that findNextFragmentSet finds no levels positioned at end
|
|
// boundaries, or that there are no spans remaining after applying a transform,
|
|
// in which case the span [m.start, m.end) overlaps with nothing. In this case
|
|
// findNextFragmentSet loops, repeating the above process again until it finds a
|
|
// span that does contain keys.
|
|
//
|
|
// # Memory safety
|
|
//
|
|
// The FragmentIterator interface only guarantees stability of a Span and its
|
|
// associated slices until the next positioning method is called. Adjacent Spans
|
|
// may be contained in different sstables, requring the FragmentIterator
|
|
// implementation to close one sstable, releasing its memory, before opening the
|
|
// next. Most of the state used by the MergingIter is derived from spans at
|
|
// current child iterator positions only, ensuring state is stable. The one
|
|
// exception is the start bound during forward iteration and the end bound
|
|
// during reverse iteration.
|
|
//
|
|
// If the heap root originates from an end boundary when findNextFragmentSet
|
|
// begins, a Next on the heap root level may invalidate the end boundary. To
|
|
// accommodate this, find{Next,Prev}FragmentSet copy the initial boundary if the
|
|
// subsequent Next/Prev would move to the next span.
|
|
type MergingIter struct {
|
|
*MergingBuffers
|
|
// start and end hold the bounds for the span currently under the
|
|
// iterator position.
|
|
//
|
|
// Invariant: None of the levels' iterators contain spans with a bound
|
|
// between start and end. For all bounds b, b ≤ start || b ≥ end.
|
|
start, end []byte
|
|
|
|
// transformer defines a transformation to be applied to a span before it's
|
|
// yielded to the user. Transforming may filter individual keys contained
|
|
// within the span.
|
|
transformer Transformer
|
|
// span holds the iterator's current span. This span is used as the
|
|
// destination for transforms. Every tranformed span overwrites the
|
|
// previous.
|
|
span Span
|
|
err error
|
|
dir int8
|
|
|
|
// alloc preallocates mergingIterLevel and mergingIterItems for use by the
|
|
// merging iterator. As long as the merging iterator is used with
|
|
// manifest.NumLevels+3 and fewer fragment iterators, the merging iterator
|
|
// will not need to allocate upon initialization. The value NumLevels+3
|
|
// mirrors the preallocated levels in iterAlloc used for point iterators.
|
|
// Invariant: cap(levels) == cap(items)
|
|
alloc struct {
|
|
levels [manifest.NumLevels + 3]mergingIterLevel
|
|
items [manifest.NumLevels + 3]mergingIterItem
|
|
}
|
|
}
|
|
|
|
// MergingBuffers holds buffers used while merging keyspans.
|
|
type MergingBuffers struct {
|
|
// keys holds all of the keys across all levels that overlap the key span
|
|
// [start, end), sorted by Trailer descending. This slice is reconstituted
|
|
// in synthesizeKeys from each mergingIterLevel's keys every time the
|
|
// [start, end) bounds change.
|
|
//
|
|
// Each element points into a child iterator's memory, so the keys may not
|
|
// be directly modified.
|
|
keys keysBySeqNumKind
|
|
// levels holds levels allocated by MergingIter.init. The MergingIter will
|
|
// prefer use of its `manifest.NumLevels+3` array, so this slice will be
|
|
// longer if set.
|
|
levels []mergingIterLevel
|
|
// heap holds a slice for the merging iterator heap allocated by
|
|
// MergingIter.init. The MergingIter will prefer use of its
|
|
// `manifest.NumLevels+3` items array, so this slice will be longer if set.
|
|
heap mergingIterHeap
|
|
// buf is a buffer used to save [start, end) boundary keys.
|
|
buf []byte
|
|
}
|
|
|
|
// PrepareForReuse discards any excessively large buffers.
|
|
func (bufs *MergingBuffers) PrepareForReuse() {
|
|
if cap(bufs.buf) > bufferReuseMaxCapacity {
|
|
bufs.buf = nil
|
|
}
|
|
}
|
|
|
|
// MergingIter implements the FragmentIterator interface.
|
|
var _ FragmentIterator = (*MergingIter)(nil)
|
|
|
|
type mergingIterLevel struct {
|
|
iter FragmentIterator
|
|
|
|
// heapKey holds the current key at this level for use within the heap.
|
|
heapKey boundKey
|
|
}
|
|
|
|
func (l *mergingIterLevel) next() {
|
|
if l.heapKey.kind == boundKindFragmentStart {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentEnd,
|
|
key: l.heapKey.span.End,
|
|
span: l.heapKey.span,
|
|
}
|
|
return
|
|
}
|
|
if s := l.iter.Next(); s == nil {
|
|
l.heapKey = boundKey{kind: boundKindInvalid}
|
|
} else {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentStart,
|
|
key: s.Start,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
|
|
func (l *mergingIterLevel) prev() {
|
|
if l.heapKey.kind == boundKindFragmentEnd {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentStart,
|
|
key: l.heapKey.span.Start,
|
|
span: l.heapKey.span,
|
|
}
|
|
return
|
|
}
|
|
if s := l.iter.Prev(); s == nil {
|
|
l.heapKey = boundKey{kind: boundKindInvalid}
|
|
} else {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentEnd,
|
|
key: s.End,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Init initializes the merging iterator with the provided fragment iterators.
|
|
func (m *MergingIter) Init(
|
|
cmp base.Compare, transformer Transformer, bufs *MergingBuffers, iters ...FragmentIterator,
|
|
) {
|
|
*m = MergingIter{
|
|
MergingBuffers: bufs,
|
|
transformer: transformer,
|
|
}
|
|
m.heap.cmp = cmp
|
|
levels, items := m.levels, m.heap.items
|
|
|
|
// Invariant: cap(levels) >= cap(items)
|
|
// Invariant: cap(alloc.levels) == cap(alloc.items)
|
|
if len(iters) <= len(m.alloc.levels) {
|
|
// The slices allocated on the MergingIter struct are large enough.
|
|
m.levels = m.alloc.levels[:len(iters)]
|
|
m.heap.items = m.alloc.items[:0]
|
|
} else if len(iters) <= cap(levels) {
|
|
// The existing heap-allocated slices are large enough, so reuse them.
|
|
m.levels = levels[:len(iters)]
|
|
m.heap.items = items[:0]
|
|
} else {
|
|
// Heap allocate new slices.
|
|
m.levels = make([]mergingIterLevel, len(iters))
|
|
m.heap.items = make([]mergingIterItem, 0, len(iters))
|
|
}
|
|
for i := range m.levels {
|
|
m.levels[i] = mergingIterLevel{iter: iters[i]}
|
|
}
|
|
}
|
|
|
|
// AddLevel adds a new level to the bottom of the merging iterator. AddLevel
|
|
// must be called after Init and before any other method.
|
|
func (m *MergingIter) AddLevel(iter FragmentIterator) {
|
|
m.levels = append(m.levels, mergingIterLevel{iter: iter})
|
|
}
|
|
|
|
// SeekGE moves the iterator to the first span covering a key greater than
|
|
// or equal to the given key. This is equivalent to seeking to the first
|
|
// span with an end key greater than the given key.
|
|
func (m *MergingIter) SeekGE(key []byte) *Span {
|
|
m.invalidate() // clear state about current position
|
|
|
|
// SeekGE(k) seeks to the first span with an end key greater than the given
|
|
// key. The merged span M that we're searching for might straddle the seek
|
|
// `key`. In this case, the M.Start may be a key ≤ the seek key.
|
|
//
|
|
// Consider a SeekGE(dog) in the following example.
|
|
//
|
|
// i0: b---d e-----h
|
|
// i1: a---c h-----k
|
|
// i2: a------------------------------p
|
|
// merged: a-b-c-d-e-----h-----k----------p
|
|
//
|
|
// The merged span M containing 'dog' is [d,e). The 'd' of the merged span
|
|
// comes from i0's [b,d)'s end boundary. The [b,d) span does not cover any
|
|
// key >= dog, so we cannot find the span by positioning the child iterators
|
|
// using a SeekGE(dog).
|
|
//
|
|
// Instead, if we take all the child iterators' spans bounds:
|
|
// a b c d e h k p
|
|
// We want to partition them into keys ≤ `key` and keys > `key`.
|
|
// dog
|
|
// │
|
|
// a b c d│e h k p
|
|
// │
|
|
// The largest key on the left of the partition forms the merged span's
|
|
// start key, and the smallest key on the right of the partition forms the
|
|
// merged span's end key. Recharacterized:
|
|
//
|
|
// M.Start: the largest boundary ≤ k of any child span
|
|
// M.End: the smallest boundary > k of any child span
|
|
//
|
|
// The FragmentIterator interface doesn't implement seeking by all bounds,
|
|
// it implements seeking by containment. A SeekGE(k) will ensure we observe
|
|
// all start boundaries ≥ k and all end boundaries > k but does not ensure
|
|
// we observe end boundaries = k or any boundaries < k. A SeekLT(k) will
|
|
// ensure we observe all start boundaries < k and all end boundaries ≤ k but
|
|
// does not ensure we observe any start boundaries = k or any boundaries >
|
|
// k. This forces us to seek in one direction and step in the other.
|
|
//
|
|
// In a SeekGE, we want to end up oriented in the forward direction when
|
|
// complete, so we begin with searching for M.Start by SeekLT-ing every
|
|
// child iterator to `k`. For every child span found, we determine the
|
|
// largest bound ≤ `k` and use it to initialize our max heap. The resulting
|
|
// root of the max heap is a preliminary value for `M.Start`.
|
|
for i := range m.levels {
|
|
l := &m.levels[i]
|
|
s := l.iter.SeekLT(key)
|
|
if s == nil {
|
|
l.heapKey = boundKey{kind: boundKindInvalid}
|
|
} else if m.cmp(s.End, key) <= 0 {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentEnd,
|
|
key: s.End,
|
|
span: s,
|
|
}
|
|
} else {
|
|
// s.End > key && s.Start < key
|
|
// We need to use this span's start bound, since that's the largest
|
|
// bound ≤ key.
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentStart,
|
|
key: s.Start,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
m.initMaxHeap()
|
|
if m.err != nil {
|
|
return nil
|
|
} else if len(m.heap.items) == 0 {
|
|
// There are no spans covering any key < `key`. There is no span that
|
|
// straddles the seek key. Reorient the heap into a min heap and return
|
|
// the first span we find in the forward direction.
|
|
m.switchToMinHeap()
|
|
return m.findNextFragmentSet()
|
|
}
|
|
|
|
// The heap root is now the largest boundary key b such that:
|
|
// 1. b < k
|
|
// 2. b = k, and b is an end boundary
|
|
// There's a third case that we will need to consider later, after we've
|
|
// switched to a min heap:
|
|
// 3. there exists a start boundary key b such that b = k.
|
|
// A start boundary key equal to k would not be surfaced when we seeked all
|
|
// the levels using SeekLT(k), since no key <k would be covered within a
|
|
// span within an inclusive `k` start boundary.
|
|
//
|
|
// Assume that the tightest boundary ≤ k is the current heap root (cases 1 &
|
|
// 2). After we switch to a min heap, we'll check for the third case and
|
|
// adjust the start boundary if necessary.
|
|
m.start = m.heap.items[0].boundKey.key
|
|
|
|
// Before switching the direction of the heap, save a copy of the start
|
|
// boundary if it's the end boundary of some child span. Next-ing the child
|
|
// iterator might switch files and invalidate the memory of the bound.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentEnd {
|
|
m.buf = append(m.buf[:0], m.start...)
|
|
m.start = m.buf
|
|
}
|
|
|
|
// Switch to a min heap. This will move each level to the next bound in
|
|
// every level, and then establish a min heap. This allows us to obtain the
|
|
// smallest boundary key > `key`, which will serve as our candidate end
|
|
// bound.
|
|
m.switchToMinHeap()
|
|
if m.err != nil {
|
|
return nil
|
|
} else if len(m.heap.items) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Check for the case 3 described above. It's possible that when we switch
|
|
// heap directions, we discover a start boundary of some child span that is
|
|
// equal to the seek key `key`. In this case, we want this key to be our
|
|
// start boundary.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentStart &&
|
|
m.cmp(m.heap.items[0].boundKey.key, key) == 0 {
|
|
// Call findNextFragmentSet, which will set m.start to the heap root and
|
|
// proceed forward.
|
|
return m.findNextFragmentSet()
|
|
}
|
|
|
|
m.end = m.heap.items[0].boundKey.key
|
|
if found, s := m.synthesizeKeys(+1); found && s != nil {
|
|
return s
|
|
}
|
|
return m.findNextFragmentSet()
|
|
|
|
}
|
|
|
|
// SeekLT moves the iterator to the last span covering a key less than the
|
|
// given key. This is equivalent to seeking to the last span with a start
|
|
// key less than the given key.
|
|
func (m *MergingIter) SeekLT(key []byte) *Span {
|
|
m.invalidate() // clear state about current position
|
|
|
|
// SeekLT(k) seeks to the last span with a start key less than the given
|
|
// key. The merged span M that we're searching for might straddle the seek
|
|
// `key`. In this case, the M.End may be a key ≥ the seek key.
|
|
//
|
|
// Consider a SeekLT(dog) in the following example.
|
|
//
|
|
// i0: b---d e-----h
|
|
// i1: a---c h-----k
|
|
// i2: a------------------------------p
|
|
// merged: a-b-c-d-e-----h-----k----------p
|
|
//
|
|
// The merged span M containing the largest key <'dog' is [d,e). The 'e' of
|
|
// the merged span comes from i0's [e,h)'s start boundary. The [e,h) span
|
|
// does not cover any key < dog, so we cannot find the span by positioning
|
|
// the child iterators using a SeekLT(dog).
|
|
//
|
|
// Instead, if we take all the child iterators' spans bounds:
|
|
// a b c d e h k p
|
|
// We want to partition them into keys < `key` and keys ≥ `key`.
|
|
// dog
|
|
// │
|
|
// a b c d│e h k p
|
|
// │
|
|
// The largest key on the left of the partition forms the merged span's
|
|
// start key, and the smallest key on the right of the partition forms the
|
|
// merged span's end key. Recharacterized:
|
|
//
|
|
// M.Start: the largest boundary < k of any child span
|
|
// M.End: the smallest boundary ≥ k of any child span
|
|
//
|
|
// The FragmentIterator interface doesn't implement seeking by all bounds,
|
|
// it implements seeking by containment. A SeekGE(k) will ensure we observe
|
|
// all start boundaries ≥ k and all end boundaries > k but does not ensure
|
|
// we observe end boundaries = k or any boundaries < k. A SeekLT(k) will
|
|
// ensure we observe all start boundaries < k and all end boundaries ≤ k but
|
|
// does not ensure we observe any start boundaries = k or any boundaries >
|
|
// k. This forces us to seek in one direction and step in the other.
|
|
//
|
|
// In a SeekLT, we want to end up oriented in the backward direction when
|
|
// complete, so we begin with searching for M.End by SeekGE-ing every
|
|
// child iterator to `k`. For every child span found, we determine the
|
|
// smallest bound ≥ `k` and use it to initialize our min heap. The resulting
|
|
// root of the min heap is a preliminary value for `M.End`.
|
|
for i := range m.levels {
|
|
l := &m.levels[i]
|
|
s := l.iter.SeekGE(key)
|
|
if s == nil {
|
|
l.heapKey = boundKey{kind: boundKindInvalid}
|
|
} else if m.cmp(s.Start, key) >= 0 {
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentStart,
|
|
key: s.Start,
|
|
span: s,
|
|
}
|
|
} else {
|
|
// s.Start < key
|
|
// We need to use this span's end bound, since that's the smallest
|
|
// bound > key.
|
|
l.heapKey = boundKey{
|
|
kind: boundKindFragmentEnd,
|
|
key: s.End,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
m.initMinHeap()
|
|
if m.err != nil {
|
|
return nil
|
|
} else if len(m.heap.items) == 0 {
|
|
// There are no spans covering any key ≥ `key`. There is no span that
|
|
// straddles the seek key. Reorient the heap into a max heap and return
|
|
// the first span we find in the reverse direction.
|
|
m.switchToMaxHeap()
|
|
return m.findPrevFragmentSet()
|
|
}
|
|
|
|
// The heap root is now the smallest boundary key b such that:
|
|
// 1. b > k
|
|
// 2. b = k, and b is a start boundary
|
|
// There's a third case that we will need to consider later, after we've
|
|
// switched to a max heap:
|
|
// 3. there exists an end boundary key b such that b = k.
|
|
// An end boundary key equal to k would not be surfaced when we seeked all
|
|
// the levels using SeekGE(k), since k would not be contained within the
|
|
// exclusive end boundary.
|
|
//
|
|
// Assume that the tightest boundary ≥ k is the current heap root (cases 1 &
|
|
// 2). After we switch to a max heap, we'll check for the third case and
|
|
// adjust the end boundary if necessary.
|
|
m.end = m.heap.items[0].boundKey.key
|
|
|
|
// Before switching the direction of the heap, save a copy of the end
|
|
// boundary if it's the start boundary of some child span. Prev-ing the
|
|
// child iterator might switch files and invalidate the memory of the bound.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentStart {
|
|
m.buf = append(m.buf[:0], m.end...)
|
|
m.end = m.buf
|
|
}
|
|
|
|
// Switch to a max heap. This will move each level to the previous bound in
|
|
// every level, and then establish a max heap. This allows us to obtain the
|
|
// largest boundary key < `key`, which will serve as our candidate start
|
|
// bound.
|
|
m.switchToMaxHeap()
|
|
if m.err != nil {
|
|
return nil
|
|
} else if len(m.heap.items) == 0 {
|
|
return nil
|
|
}
|
|
// Check for the case 3 described above. It's possible that when we switch
|
|
// heap directions, we discover an end boundary of some child span that is
|
|
// equal to the seek key `key`. In this case, we want this key to be our end
|
|
// boundary.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentEnd &&
|
|
m.cmp(m.heap.items[0].boundKey.key, key) == 0 {
|
|
// Call findPrevFragmentSet, which will set m.end to the heap root and
|
|
// proceed backwards.
|
|
return m.findPrevFragmentSet()
|
|
}
|
|
|
|
m.start = m.heap.items[0].boundKey.key
|
|
if found, s := m.synthesizeKeys(-1); found && s != nil {
|
|
return s
|
|
}
|
|
return m.findPrevFragmentSet()
|
|
}
|
|
|
|
// First seeks the iterator to the first span.
|
|
func (m *MergingIter) First() *Span {
|
|
m.invalidate() // clear state about current position
|
|
for i := range m.levels {
|
|
if s := m.levels[i].iter.First(); s == nil {
|
|
m.levels[i].heapKey = boundKey{kind: boundKindInvalid}
|
|
} else {
|
|
m.levels[i].heapKey = boundKey{
|
|
kind: boundKindFragmentStart,
|
|
key: s.Start,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
m.initMinHeap()
|
|
return m.findNextFragmentSet()
|
|
}
|
|
|
|
// Last seeks the iterator to the last span.
|
|
func (m *MergingIter) Last() *Span {
|
|
m.invalidate() // clear state about current position
|
|
for i := range m.levels {
|
|
if s := m.levels[i].iter.Last(); s == nil {
|
|
m.levels[i].heapKey = boundKey{kind: boundKindInvalid}
|
|
} else {
|
|
m.levels[i].heapKey = boundKey{
|
|
kind: boundKindFragmentEnd,
|
|
key: s.End,
|
|
span: s,
|
|
}
|
|
}
|
|
}
|
|
m.initMaxHeap()
|
|
return m.findPrevFragmentSet()
|
|
}
|
|
|
|
// Next advances the iterator to the next span.
|
|
func (m *MergingIter) Next() *Span {
|
|
if m.err != nil {
|
|
return nil
|
|
}
|
|
if m.dir == +1 && (m.end == nil || m.start == nil) {
|
|
return nil
|
|
}
|
|
if m.dir != +1 {
|
|
m.switchToMinHeap()
|
|
}
|
|
return m.findNextFragmentSet()
|
|
}
|
|
|
|
// Prev advances the iterator to the previous span.
|
|
func (m *MergingIter) Prev() *Span {
|
|
if m.err != nil {
|
|
return nil
|
|
}
|
|
if m.dir == -1 && (m.end == nil || m.start == nil) {
|
|
return nil
|
|
}
|
|
if m.dir != -1 {
|
|
m.switchToMaxHeap()
|
|
}
|
|
return m.findPrevFragmentSet()
|
|
}
|
|
|
|
// Error returns any accumulated error.
|
|
func (m *MergingIter) Error() error {
|
|
if m.heap.len() == 0 || m.err != nil {
|
|
return m.err
|
|
}
|
|
return m.levels[m.heap.items[0].index].iter.Error()
|
|
}
|
|
|
|
// Close closes the iterator, releasing all acquired resources.
|
|
func (m *MergingIter) Close() error {
|
|
for i := range m.levels {
|
|
if err := m.levels[i].iter.Close(); err != nil && m.err == nil {
|
|
m.err = err
|
|
}
|
|
}
|
|
m.levels = nil
|
|
m.heap.items = m.heap.items[:0]
|
|
return m.err
|
|
}
|
|
|
|
// String implements fmt.Stringer.
|
|
func (m *MergingIter) String() string {
|
|
return "merging-keyspan"
|
|
}
|
|
|
|
func (m *MergingIter) initMinHeap() {
|
|
m.dir = +1
|
|
m.heap.reverse = false
|
|
m.initHeap()
|
|
}
|
|
|
|
func (m *MergingIter) initMaxHeap() {
|
|
m.dir = -1
|
|
m.heap.reverse = true
|
|
m.initHeap()
|
|
}
|
|
|
|
func (m *MergingIter) initHeap() {
|
|
m.heap.items = m.heap.items[:0]
|
|
for i := range m.levels {
|
|
if l := &m.levels[i]; l.heapKey.kind != boundKindInvalid {
|
|
m.heap.items = append(m.heap.items, mergingIterItem{
|
|
index: i,
|
|
boundKey: &l.heapKey,
|
|
})
|
|
} else {
|
|
m.err = firstError(m.err, l.iter.Error())
|
|
if m.err != nil {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
m.heap.init()
|
|
}
|
|
|
|
func (m *MergingIter) switchToMinHeap() {
|
|
// switchToMinHeap reorients the heap for forward iteration, without moving
|
|
// the current MergingIter position.
|
|
|
|
// The iterator is currently positioned at the span [m.start, m.end),
|
|
// oriented in the reverse direction, so each level's iterator is positioned
|
|
// to the largest key ≤ m.start. To reorient in the forward direction, we
|
|
// must advance each level's iterator to the smallest key ≥ m.end. Consider
|
|
// this three-level example.
|
|
//
|
|
// i0: b---d e-----h
|
|
// i1: a---c h-----k
|
|
// i2: a------------------------------p
|
|
//
|
|
// merged: a-b-c-d-e-----h-----k----------p
|
|
//
|
|
// If currently positioned at the merged span [c,d), then the level
|
|
// iterators' heap keys are:
|
|
//
|
|
// i0: (b, [b, d)) i1: (c, [a,c)) i2: (a, [a,p))
|
|
//
|
|
// Reversing the heap should not move the merging iterator and should not
|
|
// change the current [m.start, m.end) bounds. It should only prepare for
|
|
// forward iteration by updating the child iterators' heap keys to:
|
|
//
|
|
// i0: (d, [b, d)) i1: (h, [h,k)) i2: (p, [a,p))
|
|
//
|
|
// In every level the first key ≥ m.end is the next in the iterator.
|
|
// Justification: Suppose not and a level iterator's next key was some key k
|
|
// such that k < m.end. The max-heap invariant dictates that the current
|
|
// iterator position is the largest entry with a user key ≥ m.start. This
|
|
// means k > m.start. We started with the assumption that k < m.end, so
|
|
// m.start < k < m.end. But then k is between our current span bounds,
|
|
// and reverse iteration would have constructed the current interval to be
|
|
// [k, m.end) not [m.start, m.end).
|
|
|
|
if invariants.Enabled {
|
|
for i := range m.levels {
|
|
l := &m.levels[i]
|
|
if l.heapKey.kind != boundKindInvalid && m.cmp(l.heapKey.key, m.start) > 0 {
|
|
panic("pebble: invariant violation: max-heap key > m.start")
|
|
}
|
|
}
|
|
}
|
|
|
|
for i := range m.levels {
|
|
m.levels[i].next()
|
|
}
|
|
m.initMinHeap()
|
|
}
|
|
|
|
func (m *MergingIter) switchToMaxHeap() {
|
|
// switchToMaxHeap reorients the heap for reverse iteration, without moving
|
|
// the current MergingIter position.
|
|
|
|
// The iterator is currently positioned at the span [m.start, m.end),
|
|
// oriented in the forward direction. Each level's iterator is positioned at
|
|
// the smallest bound ≥ m.end. To reorient in the reverse direction, we must
|
|
// move each level's iterator to the largest key ≤ m.start. Consider this
|
|
// three-level example.
|
|
//
|
|
// i0: b---d e-----h
|
|
// i1: a---c h-----k
|
|
// i2: a------------------------------p
|
|
//
|
|
// merged: a-b-c-d-e-----h-----k----------p
|
|
//
|
|
// If currently positioned at the merged span [c,d), then the level
|
|
// iterators' heap keys are:
|
|
//
|
|
// i0: (d, [b, d)) i1: (h, [h,k)) i2: (p, [a,p))
|
|
//
|
|
// Reversing the heap should not move the merging iterator and should not
|
|
// change the current [m.start, m.end) bounds. It should only prepare for
|
|
// reverse iteration by updating the child iterators' heap keys to:
|
|
//
|
|
// i0: (b, [b, d)) i1: (c, [a,c)) i2: (a, [a,p))
|
|
//
|
|
// In every level the largest key ≤ m.start is the prev in the iterator.
|
|
// Justification: Suppose not and a level iterator's prev key was some key k
|
|
// such that k > m.start. The min-heap invariant dictates that the current
|
|
// iterator position is the smallest entry with a user key ≥ m.end. This
|
|
// means k < m.end, otherwise the iterator would be positioned at k. We
|
|
// started with the assumption that k > m.start, so m.start < k < m.end. But
|
|
// then k is between our current span bounds, and reverse iteration
|
|
// would have constructed the current interval to be [m.start, k) not
|
|
// [m.start, m.end).
|
|
|
|
if invariants.Enabled {
|
|
for i := range m.levels {
|
|
l := &m.levels[i]
|
|
if l.heapKey.kind != boundKindInvalid && m.cmp(l.heapKey.key, m.end) < 0 {
|
|
panic("pebble: invariant violation: min-heap key < m.end")
|
|
}
|
|
}
|
|
}
|
|
|
|
for i := range m.levels {
|
|
m.levels[i].prev()
|
|
}
|
|
m.initMaxHeap()
|
|
}
|
|
|
|
func (m *MergingIter) cmp(a, b []byte) int {
|
|
return m.heap.cmp(a, b)
|
|
}
|
|
|
|
func (m *MergingIter) findNextFragmentSet() *Span {
|
|
// Each iteration of this loop considers a new merged span between unique
|
|
// user keys. An iteration may find that there exists no overlap for a given
|
|
// span, (eg, if the spans [a,b), [d, e) exist within level iterators, the
|
|
// below loop will still consider [b,d) before continuing to [d, e)). It
|
|
// returns when it finds a span that is covered by at least one key.
|
|
|
|
for m.heap.len() > 0 && m.err == nil {
|
|
// Initialize the next span's start bound. SeekGE and First prepare the
|
|
// heap without advancing. Next leaves the heap in a state such that the
|
|
// root is the smallest bound key equal to the returned span's end key,
|
|
// so the heap is already positioned at the next merged span's start key.
|
|
|
|
// NB: m.heapRoot() might be either an end boundary OR a start boundary
|
|
// of a level's span. Both end and start boundaries may still be a start
|
|
// key of a span in the set of fragmented spans returned by MergingIter.
|
|
// Consider the scenario:
|
|
// a----------l #1
|
|
// b-----------m #2
|
|
//
|
|
// The merged, fully-fragmented spans that MergingIter exposes to the caller
|
|
// have bounds:
|
|
// a-b #1
|
|
// b--------l #1
|
|
// b--------l #2
|
|
// l-m #2
|
|
//
|
|
// When advancing to l-m#2, we must set m.start to 'l', which originated
|
|
// from [a,l)#1's end boundary.
|
|
m.start = m.heap.items[0].boundKey.key
|
|
|
|
// Before calling nextEntry, consider whether it might invalidate our
|
|
// start boundary. If the start boundary key originated from an end
|
|
// boundary, then we need to copy the start key before advancing the
|
|
// underlying iterator to the next Span.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentEnd {
|
|
m.buf = append(m.buf[:0], m.start...)
|
|
m.start = m.buf
|
|
}
|
|
|
|
// There may be many entries all with the same user key. Spans in other
|
|
// levels may also start or end at this same user key. For eg:
|
|
// L1: [a, c) [c, d)
|
|
// L2: [c, e)
|
|
// If we're positioned at L1's end(c) end boundary, we want to advance
|
|
// to the first bound > c.
|
|
m.nextEntry()
|
|
for len(m.heap.items) > 0 && m.err == nil && m.cmp(m.heapRoot(), m.start) == 0 {
|
|
m.nextEntry()
|
|
}
|
|
if len(m.heap.items) == 0 || m.err != nil {
|
|
break
|
|
}
|
|
|
|
// The current entry at the top of the heap is the first key > m.start.
|
|
// It must become the end bound for the span we will return to the user.
|
|
// In the above example, the root of the heap is L1's end(d).
|
|
m.end = m.heap.items[0].boundKey.key
|
|
|
|
// Each level within m.levels may have a span that overlaps the
|
|
// fragmented key span [m.start, m.end). Update m.keys to point to them
|
|
// and sort them by kind, sequence number. There may not be any keys
|
|
// defined over [m.start, m.end) if we're between the end of one span
|
|
// and the start of the next, OR if the configured transform filters any
|
|
// keys out. We allow empty spans that were emitted by child iterators, but
|
|
// we elide empty spans created by the mergingIter itself that don't overlap
|
|
// with any child iterator returned spans (i.e. empty spans that bridge two
|
|
// distinct child-iterator-defined spans).
|
|
if found, s := m.synthesizeKeys(+1); found && s != nil {
|
|
return s
|
|
}
|
|
}
|
|
// Exhausted.
|
|
m.clear()
|
|
return nil
|
|
}
|
|
|
|
func (m *MergingIter) findPrevFragmentSet() *Span {
|
|
// Each iteration of this loop considers a new merged span between unique
|
|
// user keys. An iteration may find that there exists no overlap for a given
|
|
// span, (eg, if the spans [a,b), [d, e) exist within level iterators, the
|
|
// below loop will still consider [b,d) before continuing to [a, b)). It
|
|
// returns when it finds a span that is covered by at least one key.
|
|
|
|
for m.heap.len() > 0 && m.err == nil {
|
|
// Initialize the next span's end bound. SeekLT and Last prepare the
|
|
// heap without advancing. Prev leaves the heap in a state such that the
|
|
// root is the largest bound key equal to the returned span's start key,
|
|
// so the heap is already positioned at the next merged span's end key.
|
|
|
|
// NB: m.heapRoot() might be either an end boundary OR a start boundary
|
|
// of a level's span. Both end and start boundaries may still be a start
|
|
// key of a span returned by MergingIter. Consider the scenario:
|
|
// a----------l #2
|
|
// b-----------m #1
|
|
//
|
|
// The merged, fully-fragmented spans that MergingIter exposes to the caller
|
|
// have bounds:
|
|
// a-b #2
|
|
// b--------l #2
|
|
// b--------l #1
|
|
// l-m #1
|
|
//
|
|
// When Preving to a-b#2, we must set m.end to 'b', which originated
|
|
// from [b,m)#1's start boundary.
|
|
m.end = m.heap.items[0].boundKey.key
|
|
|
|
// Before calling prevEntry, consider whether it might invalidate our
|
|
// end boundary. If the end boundary key originated from a start
|
|
// boundary, then we need to copy the end key before advancing the
|
|
// underlying iterator to the previous Span.
|
|
if m.heap.items[0].boundKey.kind == boundKindFragmentStart {
|
|
m.buf = append(m.buf[:0], m.end...)
|
|
m.end = m.buf
|
|
}
|
|
|
|
// There may be many entries all with the same user key. Spans in other
|
|
// levels may also start or end at this same user key. For eg:
|
|
// L1: [a, c) [c, d)
|
|
// L2: [c, e)
|
|
// If we're positioned at L1's start(c) start boundary, we want to prev
|
|
// to move to the first bound < c.
|
|
m.prevEntry()
|
|
for len(m.heap.items) > 0 && m.err == nil && m.cmp(m.heapRoot(), m.end) == 0 {
|
|
m.prevEntry()
|
|
}
|
|
if len(m.heap.items) == 0 || m.err != nil {
|
|
break
|
|
}
|
|
|
|
// The current entry at the top of the heap is the first key < m.end.
|
|
// It must become the start bound for the span we will return to the
|
|
// user. In the above example, the root of the heap is L1's start(a).
|
|
m.start = m.heap.items[0].boundKey.key
|
|
|
|
// Each level within m.levels may have a set of keys that overlap the
|
|
// fragmented key span [m.start, m.end). Update m.keys to point to them
|
|
// and sort them by kind, sequence number. There may not be any keys
|
|
// spanning [m.start, m.end) if we're between the end of one span and
|
|
// the start of the next, OR if the configured transform filters any
|
|
// keys out. We allow empty spans that were emitted by child iterators, but
|
|
// we elide empty spans created by the mergingIter itself that don't overlap
|
|
// with any child iterator returned spans (i.e. empty spans that bridge two
|
|
// distinct child-iterator-defined spans).
|
|
if found, s := m.synthesizeKeys(-1); found && s != nil {
|
|
return s
|
|
}
|
|
}
|
|
// Exhausted.
|
|
m.clear()
|
|
return nil
|
|
}
|
|
|
|
func (m *MergingIter) heapRoot() []byte {
|
|
return m.heap.items[0].boundKey.key
|
|
}
|
|
|
|
// synthesizeKeys is called by find{Next,Prev}FragmentSet to populate and
|
|
// sort the set of keys overlapping [m.start, m.end).
|
|
//
|
|
// During forward iteration, if the current heap item is a fragment end,
|
|
// then the fragment's start must be ≤ m.start and the fragment overlaps the
|
|
// current iterator position of [m.start, m.end).
|
|
//
|
|
// During reverse iteration, if the current heap item is a fragment start,
|
|
// then the fragment's end must be ≥ m.end and the fragment overlaps the
|
|
// current iteration position of [m.start, m.end).
|
|
//
|
|
// The boolean return value, `found`, is true if the returned span overlaps
|
|
// with a span returned by a child iterator.
|
|
func (m *MergingIter) synthesizeKeys(dir int8) (bool, *Span) {
|
|
if invariants.Enabled {
|
|
if m.cmp(m.start, m.end) >= 0 {
|
|
panic(fmt.Sprintf("pebble: invariant violation: span start ≥ end: %s >= %s", m.start, m.end))
|
|
}
|
|
}
|
|
|
|
m.keys = m.keys[:0]
|
|
found := false
|
|
for i := range m.levels {
|
|
if dir == +1 && m.levels[i].heapKey.kind == boundKindFragmentEnd ||
|
|
dir == -1 && m.levels[i].heapKey.kind == boundKindFragmentStart {
|
|
m.keys = append(m.keys, m.levels[i].heapKey.span.Keys...)
|
|
found = true
|
|
}
|
|
}
|
|
// TODO(jackson): We should be able to remove this sort and instead
|
|
// guarantee that we'll return keys in the order of the levels they're from.
|
|
// With careful iterator construction, this would guarantee that they're
|
|
// sorted by trailer descending for the range key iteration use case.
|
|
sort.Sort(&m.keys)
|
|
|
|
// Apply the configured transform. See VisibleTransform.
|
|
m.span = Span{
|
|
Start: m.start,
|
|
End: m.end,
|
|
Keys: m.keys,
|
|
KeysOrder: ByTrailerDesc,
|
|
}
|
|
// NB: m.heap.cmp is a base.Compare, whereas m.cmp is a method on
|
|
// MergingIter.
|
|
if err := m.transformer.Transform(m.heap.cmp, m.span, &m.span); err != nil {
|
|
m.err = err
|
|
return false, nil
|
|
}
|
|
return found, &m.span
|
|
}
|
|
|
|
func (m *MergingIter) invalidate() {
|
|
m.err = nil
|
|
}
|
|
|
|
func (m *MergingIter) clear() {
|
|
for fi := range m.keys {
|
|
m.keys[fi] = Key{}
|
|
}
|
|
m.keys = m.keys[:0]
|
|
}
|
|
|
|
// nextEntry steps to the next entry.
|
|
func (m *MergingIter) nextEntry() {
|
|
l := &m.levels[m.heap.items[0].index]
|
|
l.next()
|
|
if !l.heapKey.valid() {
|
|
// l.iter is exhausted.
|
|
m.err = l.iter.Error()
|
|
if m.err == nil {
|
|
m.heap.pop()
|
|
}
|
|
return
|
|
}
|
|
|
|
if m.heap.len() > 1 {
|
|
m.heap.fix(0)
|
|
}
|
|
}
|
|
|
|
// prevEntry steps to the previous entry.
|
|
func (m *MergingIter) prevEntry() {
|
|
l := &m.levels[m.heap.items[0].index]
|
|
l.prev()
|
|
if !l.heapKey.valid() {
|
|
// l.iter is exhausted.
|
|
m.err = l.iter.Error()
|
|
if m.err == nil {
|
|
m.heap.pop()
|
|
}
|
|
return
|
|
}
|
|
|
|
if m.heap.len() > 1 {
|
|
m.heap.fix(0)
|
|
}
|
|
}
|
|
|
|
// DebugString returns a string representing the current internal state of the
|
|
// merging iterator and its heap for debugging purposes.
|
|
func (m *MergingIter) DebugString() string {
|
|
var buf bytes.Buffer
|
|
fmt.Fprintf(&buf, "Current bounds: [%q, %q)\n", m.start, m.end)
|
|
for i := range m.levels {
|
|
fmt.Fprintf(&buf, "%d: heap key %s\n", i, m.levels[i].heapKey)
|
|
}
|
|
return buf.String()
|
|
}
|
|
|
|
type mergingIterItem struct {
|
|
// boundKey points to the corresponding mergingIterLevel's `iterKey`.
|
|
*boundKey
|
|
// index is the index of this level within the MergingIter's levels field.
|
|
index int
|
|
}
|
|
|
|
// mergingIterHeap is copied from mergingIterHeap defined in the root pebble
|
|
// package for use with point keys.
|
|
|
|
type mergingIterHeap struct {
|
|
cmp base.Compare
|
|
reverse bool
|
|
items []mergingIterItem
|
|
}
|
|
|
|
func (h *mergingIterHeap) len() int {
|
|
return len(h.items)
|
|
}
|
|
|
|
func (h *mergingIterHeap) less(i, j int) bool {
|
|
// This key comparison only uses the user key and not the boundKind. Bound
|
|
// kind doesn't matter because when stepping over a user key,
|
|
// findNextFragmentSet and findPrevFragmentSet skip past all heap items with
|
|
// that user key, and makes no assumptions on ordering. All other heap
|
|
// examinations only consider the user key.
|
|
ik, jk := h.items[i].key, h.items[j].key
|
|
c := h.cmp(ik, jk)
|
|
if h.reverse {
|
|
return c > 0
|
|
}
|
|
return c < 0
|
|
}
|
|
|
|
func (h *mergingIterHeap) swap(i, j int) {
|
|
h.items[i], h.items[j] = h.items[j], h.items[i]
|
|
}
|
|
|
|
// init, fix, up and down are copied from the go stdlib.
|
|
func (h *mergingIterHeap) init() {
|
|
// heapify
|
|
n := h.len()
|
|
for i := n/2 - 1; i >= 0; i-- {
|
|
h.down(i, n)
|
|
}
|
|
}
|
|
|
|
func (h *mergingIterHeap) fix(i int) {
|
|
if !h.down(i, h.len()) {
|
|
h.up(i)
|
|
}
|
|
}
|
|
|
|
func (h *mergingIterHeap) pop() *mergingIterItem {
|
|
n := h.len() - 1
|
|
h.swap(0, n)
|
|
h.down(0, n)
|
|
item := &h.items[n]
|
|
h.items = h.items[:n]
|
|
return item
|
|
}
|
|
|
|
func (h *mergingIterHeap) up(j int) {
|
|
for {
|
|
i := (j - 1) / 2 // parent
|
|
if i == j || !h.less(j, i) {
|
|
break
|
|
}
|
|
h.swap(i, j)
|
|
j = i
|
|
}
|
|
}
|
|
|
|
func (h *mergingIterHeap) down(i0, n int) bool {
|
|
i := i0
|
|
for {
|
|
j1 := 2*i + 1
|
|
if j1 >= n || j1 < 0 { // j1 < 0 after int overflow
|
|
break
|
|
}
|
|
j := j1 // left child
|
|
if j2 := j1 + 1; j2 < n && h.less(j2, j1) {
|
|
j = j2 // = 2*i + 2 // right child
|
|
}
|
|
if !h.less(j, i) {
|
|
break
|
|
}
|
|
h.swap(i, j)
|
|
i = j
|
|
}
|
|
return i > i0
|
|
}
|
|
|
|
type boundKind int8
|
|
|
|
const (
|
|
boundKindInvalid boundKind = iota
|
|
boundKindFragmentStart
|
|
boundKindFragmentEnd
|
|
)
|
|
|
|
type boundKey struct {
|
|
kind boundKind
|
|
key []byte
|
|
// span holds the span the bound key comes from.
|
|
//
|
|
// If kind is boundKindFragmentStart, then key is span.Start. If kind is
|
|
// boundKindFragmentEnd, then key is span.End.
|
|
span *Span
|
|
}
|
|
|
|
func (k boundKey) valid() bool {
|
|
return k.kind != boundKindInvalid
|
|
}
|
|
|
|
func (k boundKey) String() string {
|
|
var buf bytes.Buffer
|
|
switch k.kind {
|
|
case boundKindInvalid:
|
|
fmt.Fprint(&buf, "invalid")
|
|
case boundKindFragmentStart:
|
|
fmt.Fprint(&buf, "fragment-start")
|
|
case boundKindFragmentEnd:
|
|
fmt.Fprint(&buf, "fragment-end ")
|
|
default:
|
|
fmt.Fprintf(&buf, "unknown-kind(%d)", k.kind)
|
|
}
|
|
fmt.Fprintf(&buf, " %s [", k.key)
|
|
fmt.Fprintf(&buf, "%s", k.span)
|
|
fmt.Fprint(&buf, "]")
|
|
return buf.String()
|
|
}
|