mirror of
https://source.quilibrium.com/quilibrium/ceremonyclient.git
synced 2025-01-12 16:55:18 +00:00
223 lines
5.7 KiB
Go
223 lines
5.7 KiB
Go
//
|
|
// Copyright Coinbase, Inc. All Rights Reserved.
|
|
//
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
//
|
|
// This file contains proofs that Paillier moduli are square-free: [spec] fig 15
|
|
|
|
package paillier
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"fmt"
|
|
"math/big"
|
|
|
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/internal"
|
|
crypto "source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/core"
|
|
"source.quilibrium.com/quilibrium/monorepo/nekryptology/pkg/core/curves"
|
|
)
|
|
|
|
// [spec] 10.2 and ProvePSF, VerifyPSF fig.15
|
|
const PsfProofLength = 13
|
|
|
|
// PsfProofParams contains the inputs to ProvePSF
|
|
type PsfProofParams struct {
|
|
Curve elliptic.Curve
|
|
SecretKey *SecretKey
|
|
Pi uint32
|
|
Y *curves.EcPoint
|
|
}
|
|
|
|
// PsfVerifyParams contains the inputs to VerifyPSF
|
|
type PsfVerifyParams struct {
|
|
Curve elliptic.Curve
|
|
PublicKey *PublicKey
|
|
Pi uint32
|
|
Y *curves.EcPoint
|
|
}
|
|
|
|
// PsfProof is a slice of 13 big.Int's that prove that a Paillier modulus is square-free
|
|
type PsfProof []*big.Int
|
|
|
|
// Prove that a Paillier modulus is square-free
|
|
// [spec] §10.fig 15
|
|
func (p *PsfProofParams) Prove() (PsfProof, error) {
|
|
// Verify that params are sane
|
|
if p.Curve == nil ||
|
|
p.SecretKey == nil ||
|
|
p.Pi == 0 ||
|
|
p.Y == nil {
|
|
return nil, internal.ErrNilArguments
|
|
}
|
|
|
|
// 1. ell = 13
|
|
// Note this is set above as PsfProofLength
|
|
|
|
// 2. M = N^{-1} mod \phi(N)
|
|
M, err := crypto.Inv(p.SecretKey.N, p.SecretKey.Totient)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// 3. [x_1, ..., x_ell] <- GenerateChallenges(g,q,y,Pi,ell)
|
|
// NOTE: spec doesn't include N, but it's an oversight--should be part of the
|
|
// commitment
|
|
x, err := generateChallenges(p.Curve.Params(), p.SecretKey.N, p.Pi, p.Y)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(x) != PsfProofLength {
|
|
return nil, fmt.Errorf("Challenges array is not correct length: want=%v got=%v", PsfProofLength, len(x))
|
|
}
|
|
|
|
// 4. For i = [1, ... \ell]
|
|
// NOTE: typo in spec: says j = ... but uses subscript i in loop
|
|
proof := make([]*big.Int, PsfProofLength)
|
|
for i, xj := range x {
|
|
// 5. Compute y_i = x_i^M mod N
|
|
// NOTE: the pseudocode shows mod phi(N) which is incorrect
|
|
// it should be mod N otherwise the reverse in Verify
|
|
// will fail. Using phi(N) puts M in the wrong group.
|
|
yi, err := crypto.Exp(xj, M, p.SecretKey.N)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// 6. Set \Pi = [y_1, ..., y_\ell]
|
|
// NOTE: typo in spec: says y_t not y_\ell
|
|
proof[i] = yi
|
|
}
|
|
|
|
// 7. return \Pi
|
|
return proof, nil
|
|
}
|
|
|
|
// Verify that a Paillier modulus is square-free
|
|
// [spec] §10.fig 15
|
|
func (p PsfProof) Verify(psf *PsfVerifyParams) error {
|
|
// Verify that params are sane
|
|
if psf == nil ||
|
|
psf.Curve == nil ||
|
|
psf.PublicKey == nil ||
|
|
psf.Pi == 0 ||
|
|
psf.Y == nil {
|
|
return internal.ErrNilArguments
|
|
}
|
|
|
|
// 1. ell = 13
|
|
// Note this is set above as PsfProofLength
|
|
|
|
// 2. t = 1000
|
|
// NOTE not used anywhere
|
|
|
|
// 3. if q|N return false
|
|
if new(big.Int).Mod(psf.PublicKey.N, psf.Curve.Params().N).Cmp(crypto.Zero) == 0 {
|
|
return fmt.Errorf("paillier public key is a multiple of the curve subgroup")
|
|
}
|
|
|
|
// 4. [x_1, ..., x_ell] <- GenerateChallenges(g,q,y,Pi,ell)
|
|
// NOTE: spec doesn't include N, but it's an oversight--should be part of the
|
|
// commitment
|
|
x, err := generateChallenges(psf.Curve.Params(), psf.PublicKey.N, psf.Pi, psf.Y)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if len(x) != PsfProofLength {
|
|
return fmt.Errorf("challenges array is not correct length: want=%v got=%v", PsfProofLength, len(x))
|
|
}
|
|
|
|
// 5. for j in [1,...,l]
|
|
for j, xj := range x {
|
|
// 6. yj^N != x mod N return false
|
|
// NOTE: pseudocode uses i when loop uses j
|
|
lhs, err := crypto.Exp(p[j], psf.PublicKey.N, psf.PublicKey.N)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if lhs.Cmp(xj) != 0 {
|
|
return fmt.Errorf("not equal at %d", j)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// generateChallenges computes `l` deterministic numbers as
|
|
// challenges for PsfProof which proves that the Paillier modulus is square free
|
|
// [spec] fig.15 GenerateChallenges
|
|
func generateChallenges(params *elliptic.CurveParams, N *big.Int, pi uint32, y *curves.EcPoint) ([]*big.Int, error) {
|
|
if params == nil ||
|
|
y == nil ||
|
|
pi == 0 {
|
|
return nil, internal.ErrNilArguments
|
|
}
|
|
|
|
// 1. Set b = |N| // bit length of N
|
|
b := N.BitLen()
|
|
|
|
// a modulus that is too small turns this function into an infinite loop
|
|
// need at least a byte to guarantee termination
|
|
if b < 8 {
|
|
return nil, internal.ErrNilArguments
|
|
}
|
|
|
|
// 2. h = output bit-length of fiat-shamir hash
|
|
// See util.fiatShamir which uses sha256
|
|
// So the output bit-length is 256 bits
|
|
const h int = 256
|
|
|
|
// 3. Compute s = ⌈b/h⌉ // number of hash outputs required to obtain b bits
|
|
// i.e. the number of times we have to call fs-shamir to get the same bits as
|
|
// `b`. Compute ceil as ceilVal = (a+b-1) / b
|
|
s := int64((b + h - 1) / h)
|
|
|
|
// 4. j = 0
|
|
j := int64(0)
|
|
|
|
// 5. m = 0
|
|
m := big.NewInt(0)
|
|
|
|
x := make([]*big.Int, PsfProofLength)
|
|
|
|
Pi := new(big.Int).SetUint64(uint64(pi))
|
|
// 6. while j ≤ l
|
|
for j < PsfProofLength {
|
|
|
|
bij := big.NewInt(j)
|
|
var ej []byte
|
|
|
|
// 7. for k = [1,...,s]
|
|
for k := int64(1); k <= s; k++ {
|
|
bik := big.NewInt(k)
|
|
|
|
// 8. Compute e_jk = FS-HASH(g, q, y, p_i, j, k, m)
|
|
res, err := crypto.FiatShamir(params.Gx, params.Gy, params.N, y.X, y.Y, Pi, bij, bik, m)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// 9. Set x_j = eJ1 || ... || eJs
|
|
// Pseudocode says to concatenate outside this loop
|
|
// however, we just concatenate the bytes now instead of storing as temporary
|
|
// variables
|
|
ej = append(ej, res...)
|
|
}
|
|
// 10. Truncate ej to b bits
|
|
xj := new(big.Int).SetBytes(ej[:b/8])
|
|
|
|
// 11. if x_j < Z_N* i.e. 0 < x_j and x_j < N
|
|
if xj.Cmp(crypto.Zero) == 1 && xj.Cmp(N) == -1 {
|
|
x[j] = xj
|
|
|
|
// 12 j = j + 1
|
|
j++
|
|
// 13 m = 0
|
|
m = big.NewInt(0)
|
|
// 14 else
|
|
} else {
|
|
// 15. Set m = m + 1
|
|
m.Add(m, crypto.One)
|
|
}
|
|
}
|
|
return x, nil
|
|
}
|